Равнопеременное прямолинейное движение. Скорость тела

План-конспект урока по теме «Неравномерное движение. Мгновенная скорость»

Дата :

Тема: « »

Цели:

Образовательная : Обеспечить и сформировать осознанное усвоение знаний о неравномерном движении и мгновенной скорости;

Развивающая : Продолжить развитие навыков самостоятельной деятельности, навыков работы в группах.

Воспитательная : Формировать познавательный интерес к новым знаниям; воспитывать дисциплину поведения.

Тип урока: урок усвоения новых знаний

Оборудование и источники информации:

Исаченкова, Л. А. Физика: учеб. для 9 кл. учреждений общ. сред. образования с рус. яз. обучения / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред. А. А. Сокольского. Минск: Народная асвета, 2015

Структура урока:

    Организационный момент(5 мин)

    Актуализация опорных знаний(5мин)

    Изучение нового материала (14 мин)

    Физкультминутка (3 мин)

    Закрепление знаний (13мин)

    Итоги урока(5 мин)

    Организационный момент

Здравствуйте, садитесь! (Проверка присутствующих). Сегодня на уроке мы должны разобраться с понятиями неравномерное движение и мгновенная скорость. А это значит, что Тема урока : Неравномерное движение. Мгновенная скорость

    Актуализация опорных знаний

Мы изучили равномерное прямолинейное движение. Однако реальные тела - автомобили, корабли, самолеты, детали механизмов и др. чаще всего движутся и не прямолинейно, и не равномерно. Каковы закономерности таких движений?

    Изучение нового материала

Рассмотрим пример. Автомобиль движется по участку дороги, изображенному на рисунке 68. На подъеме движение автомобиля замедляется, при спуске - ускоряется. Движение автомобиля и не прямолинейное, и не равномерное. Как описать такое движение?

Прежде всего, для этого необходимо уточнить понятие скорость .

Из 7-го класса вам известно, что такое средняя скорость. Она определяется как отношение пути к промежутку времени, за который этот путь пройден:

(1 )

Будем называть ее средней скоростью пути. Она показывает, какой путь в среднем проходило тело за единицу времени.

Кроме средней скорости пути, необходимо ввести и среднюю скорость перемещения:

(2 )

Каков смысл средней скорости перемещения? Она показывает, какое перемещение в среднем совершало тело за единицу времени.

Сравнив формулу (2) с формулой (1 ) из § 7, можно сделать вывод: средняя скорость< > равна скорости такого равномерного прямолинейного движения, при котором за промежуток времени Δ t тело совершило бы перемещение Δ r .

Средняя скорость пути и средняя скорость перемещения - важные характеристики любого движения. Первая из них - величина скалярная, вторая - векторная. Так как Δ r < s , то модуль средней скорости перемещения не больше средней скорости пути |<>| < <>.

Средняя скорость характеризует движение за весь промежуток времени в целом. Она не дает информации о скорости движения в каждой точке траектории (в каждый момент времени). С этой целью вводится мгновенная скорость - скорость движения в данный момент времени (или в данной точке).

Как определить мгновенную скорость?

Рассмотрим пример. Пусть шарик скатывается по наклонному желобу из точки (рис. 69). На рисунке показаны положения шарика в различные моменты времени.

Нас интересует мгновенная скорость шарика в точке О. Разделив перемещение шарика Δ r 1 на соответствующий промежуток времени Δ среднюю скорость перемещения <> = на участке Скорость <> может намного отличаться от мгновенной скорости в точке О. Рассмотрим меньшее перемещение Δ = В 2 . Оно произойдет за меньший промежуток времени Δ. Средняя скорость <> = хотя и не равна скорости в точке О, но уже ближе к ней, чем <>. При дальнейшем уменьшении перемещений (Δ, Δ , ...) и промежутков времени (Δ, Δ, ...) мы будем получать средние скорости, которые все меньше отличаются друг от друга и от мгновенной скорости шарика в точке О.

Значит, достаточно точное значение мгновенной скорости можно найти по формуле при условии, что промежуток времени Δ t очень мал:

(3)

Обозначение Δ t -» 0 напоминает, что скорость, определенная по формуле (3), тем ближе к мгновенной скорости, чем меньше Δt .

Мгновенную скорость криволинейного движения тела находят аналогично (рис. 70).

Как направлена мгновенная скорость? Ясно, что в первом примере направление мгновенной скорости совпадает с направлением движения шарика (см. рис. 69). А из построения на рисунке 70 видно, что при криволинейном движении мгновенная скорость направлена по касательной к траектории в той точке, где в этот момент находится движущееся тело.

Понаблюдайте за раскаленными частицами, отрывающимися от точильного камня (рис. 71, а). Мгновенная скорость этих частиц в момент отрыва направлена по касательной к окружности, по которой они двигались до отрыва. Аналогично спортивный молот (рис. 71, б) начинает свой полет по касательной к той траектории, по которой он двигался при раскручивании метателем.

Мгновенная скорость постоянна только при равномерном прямолинейном движении. При движении по криволинейной траектории изменяется ее направление (объясните почему). При неравномерном движении изменяется ее модуль.

Если модуль мгновенной скорости возрастает, то движение тела называют ускоренным , если он убывает - замедленным.

Приведите самостоятельно примеры ускоренных и замедленных движений тел.

В общем случае при движении тела может изменяться и модуль мгновенной скорости, и ее направление (как в примере с автомобилем в начале параграфа) (см. рис. 68).

В дальнейшем мгновенную скорость мы будем называть просто скоростью.

    Закрепление знаний

    Быстрота неравномерного движения на участке траектории характеризуется средней скоростью, а в данной точке траектории - мгновенной скоростью.

    Мгновенная скорость приближенно равна средней скорости, определенной за малый промежуток времени. Чем меньше этот промежуток времени, тем меньше отличие средней скорости от мгновенной.

    Мгновенная скорость направлена по касательной к траектории движения.

    Если модуль мгновенной скорости возрастает, то движение тела называют ускоренным, если он убывает - замедленным.

    При равномерном прямолинейном движении мгновенная скорость одинакова в любой точке траектории.

    Итоги урока

Итак, подведем итоги. Что вы сегодня узнали на уроке?

Организация домашнего задания

§ 9, упр. 5 №1,2

Рефлексия.

Продолжите фразы:

    Сегодня на уроке я узнал…

    Было интересно…

    Знания, которые я получил на уроке, пригодятся

Равноускоренное криволинейное движение

Криволинейные движения - движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

Криволинейное движение - это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам

Неравномерное движение. Скорость при неравномерном движении

Ни одно тело не движется все время с постоянной скоростью. Начиная движение, автомобиль движется быстрее и быстрее. Некоторое время он может двигаться равномерно, но потом он тормозит и останавливается. При этом автомобиль проходит разные расстояния за один и то же время.

Движение, при котором тело за равные промежутки времени проходит неодинаковые отрезки пути, называется неравномерным. При таком движении величина скорости не остается неизменной. В таком случае можно говорить лишь о средней скорости.

Средняя скорость показывает, чему равно перемещение, которое тело проходит за единицу времени. Она равна отношению перемещения тела до времени движения. Средняя скорость, как и скорость тела при равномерном движении, измеряется в метрах, разделенных на секунду. Для того, чтобы характеризовать движение точнее, в физике применяют мгновенную скорость.

Скорость тела в данный момент времени или в данной точке траектории называется мгновенной скоростью. Мгновенная скорость является векторной величиной и направлена так же, как вектор перемещения. Измерить мгновенную скорость можно с помощью спидометра. В Системе Интернациональной мгновенная скорость измеряется в метрах, разделенных на секунду.

точка движение скорость неравномерный

Движение тела по окружности

В природе и технике очень часто встречается криволинейное движение. Оно сложнее прямолинейного, так как существует множество криволинейных траекторий; это движение всегда ускоренное, даже когда модуль скорости не меняется.

Но движение по любой криволинейной траектории можно приблизительно представить как движение по дугам круга.

При движении тела по окружности направление вектора скорости меняется от точки к точке. Поэтому когда говорят о скорости такого движения, подразумевают мгновенную скорость. Вектор скорости направлен по касательной к окружности, а вектор перемещения - по хордам.

Равномерное движение по окружности - это движение, во время которого модуль скорости движения не изменяется, изменяется только ее направление. Ускорение такого движения всегда направлено к центру окружности и называется центростремительным. Для того чтобы найти ускорение тела, которое движется по кругу, необходимо квадрат скорости разделить на радиус окружности.

Помимо ускорения, движение тела по кругу характеризуют следующие величины:

Период вращения тела - это время, за которое тело совершает один полный оборот. Период вращения обозначается буквой Т и измеряется в секундах.

Частота вращения тела - это число оборотов в единицу времени. Частота вращения обозначается буквой? и измеряется в герцах. Для того чтобы найти частоту, надо единицу разделить на период.

Линейная скорость - отношение перемещения тела до времени. Для того чтобы найти линейную скорость тела по окружности, необходимо длину окружности разделить на период (длина окружности равна 2? умножить на радиус).

Угловая скорость - физическая величина, равная отношению угла поворота радиуса окружности, по которой движется тело, до времени движения. Угловая скорость обозначается буквой? и измеряется в радианах, разделенных на секунду. Найти угловую скорость можно, разделив 2? на период. Угловая скорость и линейная между собой. Для того чтобы найти линейную скорость, необходимо угловую скорость умножить на радиус окружности.


Рисунок 6. Движение по окружности, формулы.

Основные положения:

Неравномерное движение – это движение с переменной скоростью.

Мгновенная скорость – это векторная физическая величина, равная пределу отношения перемещения тела к промежутку времени, стремящимся к нулю.

Если за произвольные равные промежутки времени точка проходит пути разной длины, то численное значение ее скорости с течением времени изменяется. Такое движение называется неравномерным . В этом случае пользуются скалярной величиной, называемой средней путевой скоростью неравномерного движения на данном участке траектории. Она равна отношению пройденного пути к промежутку времени, за который этот путь пройден:

Средняя скорость при неравномерном движении – отношение вектора перемещения тела к промежутку времени, за который это перемещение произошло.

Для характеристики изменения скорости движения вводится понятие ускорения .

Средним ускорением неравномерного движения в интервале времени от t до называется векторная величина, равная отношению изменения скорости к интервалу времени :

Мгновенным ускорением, или ускорением материальной точки в момент времени t, будет предел среднего ускорения:

Движение, происходящее с постоянным ускорением, называется равнопеременным.

Уравнение равнопеременного движения : .

Вектор ускорения принято раскладывать на две составляющие: тангенциальное и центростремительное ускорение.

Тангенциальное ускорение показывает быстроту изменения модуля скорости, а нормальное ускорение характеризует быстроту изменения направления скорости при криволинейном движении.

Полное ускорение тела есть геометрическая сумма тангенциальной и нормальной составляющих:

;

.

Контрольные вопросы:

1. Дать определение неравномерного движения.

2. Что называют равнопеременным движением?

3. Дайте определение мгновенной скорости.

4. Как направлен вектор мгновенной скорости?

5. Дайте определение мгновенного ускорения. В каких единицах измеряется?

6. Как направлены тангенциальное и центростремительное ускорение относительно кривизны траектории?

7. Дайте определение угловой скорости. Ее единицы измерения.

Выполните задания:

1. Напишите формулы зависимости:

а) частоты вращения от периода;

б) угловой скорости от периода;

в) угловой и линейной скорости;

г) угловой скорости от частоты;

д) центростремительного ускорения от скорости;

е) линейной скорости от частоты вращения;

ж) линейной скорости от периода.



Равномерное прямолинейное движение – это частный случай неравномерного движения.

Неравномерное движение – это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

V cp = s / t – это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

Проекция вектора скорости на ось ОХ:

V x = x’ это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

– это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

= " = " Учитывая, что 0 – скорость тела в начальный момент времени (начальная скорость), – скорость тела в данный момент времени (конечная скорость), t – промежуток времени, в течение которого произошло изменение скорости, будет следующей:

Отсюда формула скорости равнопеременного движения в любой момент времени:

= 0 + t Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой: v x = v 0x ± a x t Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

0a = v 0 bc = v Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t 1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Поможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При а x

Средняя скорость. В § 9 мы говорили, что утверждение о равномерности данного движения справедливо только с той степенью точности, с которой произведены измерения. Например, применив секундомер, можно обнаружить, что движение поезда, представлявшееся при грубом измерении равномерным, оказывается неравномерным при более тонком измерении.

Но когда поезд подходит к станции, мы обнаружим неравномерность его движения даже без секундомера. Даже грубые измерения покажут нам, что промежутки времени, за которые поезд проходит расстояния от одного телеграфного столба до другого, становятся все больше и больше. С той малой степенью точности, которую дает измерение времени по часам, движение поезда на перегоне равномерно, а при подходе к станции - неравномерно. Поместим на игрушечный заводной автомобиль капельницу, заведем его и пустим катиться по столу. В середине движения расстояния между каплями оказываются одинаковыми (движение равномерно), но затем, когда завод приблизится к концу, будет заметно, что капли ложатся все ближе одна к другой - движение неравномерно (рис. 25).

При неравномерном движении нельзя говорить о какой-то определенной скорости, так как отношение пройденного пути к соответственному промежутку времени не одинаково для разных участков , как это имело место для равномерного движения. Если, однако, нас интересует движение только на каком-либо определенном участке пути, то это движение в целом можно охарактеризовать, введя понятие средней скорости движения :средней скоростью неравномерного движения на данном участке пути называют отношение длины этого участка к промежутку времени, за который этот участок пройден :

. (14.1)

Отсюда видно, что средняя скорость равна скорости такого равномерного движения, при котором тело прошло бы данный участок пути за тот же промежуток времени, что и при действительном движении.

Как и в случае равномерного движения, можно пользоваться формулой для определения пути, пройденного за данный промежуток времени при определенной средней скорости, и формулой для определения времени, за которое пройден данный путь с данной средней скоростью. Но пользоваться этими формулами можно только для того участка пути и для того промежутка времени, для которых эта средняя скорость была рассчитана. Например, зная среднюю скорость на участке пути АВ и зная длину АВ, можно определить время, за которое был пройден этот участок, но нельзя найти время, за которое была пройдена половина участка АВ, так как средняя скорость на половине участка при неравномерном движении, вообще говоря, не будет равна средней скорости на всем участке.

Если для любых участков пути средняя скорость оказалась одинаковой, то это значит, что движение равномерное и средняя скорость равна скорости этого равномерного движения.

Если средняя скорость известна за отдельные последовательные промежутки времени, то можно найти среднюю скорость и за суммарное время движения. Пусть, например, поезд двигался в течение двух часов, причем его средняя скорость за первые 10 мин равнялась 18 км/ч, за следующие полтора часа - 50 км/ч и за остальное время - 30 км/ч. Найдем пути, пройденные за отдельные промежутки времени. Они будут равны км; км; км. Значит, общий путь, пройденный поездом, есть км. Поскольку весь этот путь был пройден за два часа, искомая средняя скорость км/ч.

Из этого примера видно, как вычислять среднюю скорость и в общем случае, когда известны средние скорости движения с которыми тело двигалось в течение последовательных промежутков времени . Средняя скорость всего движения выразится формулой