Капиллярные явления в природе и технике. Что такое капиллярные явления и чем они объясняются? Где можно наблюдать капиллярные явления

Уверены ли вы, что понимаете, каким образом работает обычное полотенце? Или почему клей склеивает поверхности? Или почему горит свечка? А почему с мылом руки мыть намного эффективнее, чем без мыла? Ответы на все эти вопросы вы получите на данном уроке. Потому что все они, так или иначе, связаны со смачиванием поверхностей и капиллярными явлениями.

2. Зная коэффициент поверхностного натяжения воды и ее плотность, определите диаметр обычной медицинской пипетки по высоте столбика воды, поднимающегося по пипетке без резинового колпачка.

3. Рассмотрите следующие вопросы и ответы на них:

Список вопросов-ответов

Вопрос: Как капиллярный эффект зависит от длины трубки?

Ответ: Капиллярный эффект никак не зависит от длины трубки. Посмотрите на формулу для определения высоты поднятия жидкости в трубке. В эту формулу не входит длина трубки.

Вопрос: Чем отличается процесс смачивания на Земле и в космическом корабле?

Ответ: Ничем, поскольку процесс смачивания происходит за счет сил взаимодействия молекул жидкости, а они не зависят от наличия или отсутствия веса.

Вопрос: Как еще можно пронаблюдать капиллярные явления на опыте?

Ответ: Возьмите шнурок от ботинка и опустите его одним концом в стакан с водой. Через некоторое время вода поднимется по тонким волокнам шнурка, и весь шнурок окажется мокрым.

Вопрос: Почему нельзя сделать «вечный двигатель», который работал бы на капиллярном эффекте?

Ответ: Действительно, кажется, что возможно построить вечный двигатель на капиллярном эффекте, если взять трубочку высоты, меньшей, чем высота столбика жидкости. Однако капелька сверху трубки не будет стекать по ней, поскольку ее будут удерживать те же силы поверхностного натяжения, которые ее поднимали. Поэтому такой «вечный двигатель» не будет работать.

Вопрос: Как будет вести себя капля в капилляре переменной толщины?

Ответ: Если жидкость смачивает капилляр, она будет двигаться в сторону уменьшения толщины капилляра, если же жидкость несмачивает капилляр, то она будет двигаться в сторону увеличения толщины капилляра. (Подробное обоснование см. И.М. Гельфгат, Л.Э. Генденштейн, Л.А. Кирик. 1001 задача по физике с указаниями и решениями, задача 10.40 )

Если вы любите пить коктейли или другие напитки из трубочки, то наверняка замечали, что когда один из ее концов опущен в жидкость, уровень напитка в ней несколько выше, чем в чашке или бокале. Почему так происходит? Обычно люди над этим не задумываются. А вот физики подобные феномены уже давно успели хорошо изучить и даже дали им собственное название - капиллярные явления. Пришел и наш черед выяснить, почему так происходит и как объясняется данные феномен.

Почему происходят капиллярные явления

В природе всему происходящему есть разумное объяснение. Если жидкость является смачивающей (к примеру, вода в пластмассовой трубке), она будет подниматься вверх по трубочке, а если несмачивающей (например, ртуть в стеклянной колбочке) - то опускаться. Причем чем меньше радиус такого капилляра, тем на большую высоту поднимется или опустится жидкость. Чем объясняются такие капиллярные явления? Физика говорит, что они происходят в результате воздействия сил Если приглядеться к поверхностному слою жидкости в капилляре, то можно заметить, что по своей форме он представляет собой некую окружность. Вдоль ее границы на стенки трубочки оказывает так называемого поверхностного натяжения. Причем, для смачивающей жидкости вектор ее направления обращен вниз, а для несмачивающей - вверх.

Согласно третьему она неизбежно вызывает равное ей по модулю противодействующее давление. Как раз оно и заставляет подниматься или опускаться жидкость в узкой трубке. Этим и объясняются всевозможные капиллярные явления. Впрочем, наверняка у многих уже возник закономерный вопрос: «А когда же прекратится подъем или опускание жидкости?» Это произойдет в том случае, когда сила тяжести, или сила Архимеда, уравновесит силу, заставляющую жидкость двигаться по трубочке.

Как можно использовать капиллярные явления?

С одним из применений данного явления, которое получило широкое распространение в производстве канцелярских изделий, знаком практически каждый студент или ученик. Вы, наверное уже догадались, что речь идет о


Ее устройство позволяет писать практически в любом положении, а тонкий и четкий след на бумаге давно сделал этот предмет весьма популярным среди пишущей братии. также широко используют в сельском хозяйстве для регулирования движения и сохранения влаги в почве. Как известно, земля, где выращиваются культуры, имеет рыхлое строение, в котором между отдельными ее частицами находятся узкие промежутки. По сути, это не что иное, как капилляры. По ним вода поступает к корневой системе и обеспечивает растения необходимой влагой и полезными солями. Однако по этим путям почвенные воды также поднимаются вверх и достаточно быстро испаряются. Чтобы предотвратить этот процесс, следует разрушить капилляры. Как раз для этого и проводят рыхление почвы. А иногда возникает и обратная ситуация, когда требуется усилить движение воды по капиллярам. В этом случае грунт укатывают, и благодаря этому число узких каналов увеличивается. В быту капиллярные явления используют при самых разных обстоятельствах. Использование промокательной бумаги, полотенец и салфеток, применение фитилей в и в технике - все это возможно благодаря наличию в их составе узких длинных каналов.

КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ - совокупность явлений, обусловленных действием межфазного поверхностного натяжения на границе раздела несмешивающихся сред; к К. я. обычно относят явления в жидкостях, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собств. паром. К. я.- частный случай поверхностных явлений. В отсутствие поверхность жидкости искривлена всегда. Под воздействием ограниченный объём жидкости стремится принять форму шара, т. е. занять объём с мин. поверхностью. Силы тяжести существенно меняют картину. Жидкость с относительно малой вязкостью быстро принимает форму сосуда, в к-рый налита, причём её свободная поверхность (не граничащая со стенками сосуда) в случае достаточно больших масс жидкости и большой площади свободной поверхности практически плоская. Однако по мере уменьшения массы жидкости роль поверхностного натяжения становится более существенной, чем сила тяжести. Так, напр., при дроблении жидкости в газе (или газа в жидкости) образуются капли (пузырьки) сферич. формы. Свойства систем, содержащих большое кол-во капель или пузырьков (эмульсии, жидкие аэрозоли, пены), и условия их формирования во многом определяются кривизной поверхности этих образований, то есть К. я. Большую роль К. я. играют и в зародышеобразовании при конденсации пара, кипении жидкостей, кристаллизации. Искривление поверхности жидкости может происходить также в результате её взаимодействия с поверхностью др. жидкости или твёрдого тела. В этом случае существенно наличие или отсутствие смачивания жидкостью этой поверхности. Если имеет место , т. е. молекулы жидкости 1 (рис. 1) сильнее взаимодействуют с поверхностью твёрдого тела 3, чем с молекулами др. жидкости (или газа) 2, то под воздействием разности сил межмолекулярного взаимодействия жидкость поднимается по стенке сосуда и примыкающий к твёрдому телу участок поверхности жидкости будет искривлён. Гидростатич. давление, вызванное подъёмом уровня жидкости, уравновешивается капиллярным давлением - разностью давлений над и под искривлённой поверхностью, величина к-рого связана с локальной кривизной поверхности жидкости. Если сближать плоские стенки сосуда с жидкостью, то зоны искривления перекроются и образуется мениск - полностью искривлённая поверхность. В таком капилляре в условиях смачивания под вогнутым мениском давление понижено, жидкость поднимается; вес столба жидкости вые. h 0 уравновешивает капиллярное давление Dр. В условиях равновесия

Искривление поверхности жидкости у краев сосуда особенно отчетливо видно в узких трубках, где искривляется вся свободная поверхность жидкости. В трубках с узким сечением эта поверхность представляет собой часть сферы, ее называют мениском . У смачивающей жидкости образуется вогнутый мениск (рис. 1, а), а у несмачивающей - выпуклый (рис. 1, б).

Так как площадь поверхности мениска больше, чем площадь поперечного сечения трубки, то под действием молекулярных сил искривленная поверхность жидкости стремится выпрямиться.

Силы поверхностного натяжения создают дополнительное (лапласово) давление под искривленной поверхностью жидкости.

Для расчета избыточного давления предположим, что поверхность жидкости имеет форму сферы радиуса R (рис. 2. а), от которой мысленно отсечен шаровой сегмент, опирающийся на окружность радиуса .

На каждый бесконечно малый элемент длины этого контура действует касательная к поверхности сферы сила поверхностного натяжения, модуль которой . Разложим вектор на две составляющие силы . Из рисунка 2, а видим, что геометрическая сумма сил для двух выделенных диаметрально противоположных элементов равна нулю. Поэтому сила поверхностного натяжения направлена перпендикулярно плоскости сечения внутрь жидкости (рис. 2, в) и модуль ее равен

Избыточное давление, создаваемое этой силой

где - площадь основания сферического сегмента. Поэтому

Если поверхность жидкости вогнутая, то сила поверхностного натяжения направлена из жидкости (рис. 2, б) и давление под вогнутой поверхностью жидкости меньше, чем под плоской, на ту же величину . Эта формула определяет лапласово давление для случая сферической формы свободной поверхности жидкости. Она является частным случаем формулы Лапласа, определяющей избыточное давление для произвольной поверхности жидкости двоякой кривизны:

где - радиусы кривизны двух любых взаимно перпендикулярных нормальных сечений поверхности жидкости. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости. Для цилиндрической поверхности избыточное давление .

Если поместить узкую трубку (капилляр ) одним концом в жидкость, налитую в широкий сосуд, то вследствие наличия силы лапласова давления жидкость в капилляре поднимается (если жидкость смачивающая) или опускается (если жидкость несмачивающая) (рис. 3, а, б), так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет.

Среди процессов, которые можно объяснить с помощью поверхностного натяжения и смачивания жидкостей, стоит особо выделить капиллярные явления. Физика - это загадочная и необыкновенная наука, без которой жизнь на Земле была бы невозможна. Давайте рассмотрим наиболее яркий пример этой важной дисциплины.

В жизненной практике такие интересные с точки зрения физики процессы, как капиллярные явления, встречаются весьма часто. Все дело в том, что в повседневной жизни нас окружает много тел, которые легко впитывают в себя жидкость. Причина этому - их пористая структура и элементарные законы физики, а результат - капиллярные явления.

Узкие трубки

Капилляр - это очень узкая трубка, в которой жидкость ведет себя особым образом. Примеров таких сосудов много в природе - капилляры кровеносной системы, пористых тел, почвы, растений и т. д.

Капиллярным явлением называется подъем или опускание жидкостей по узким трубкам. Такие процессы наблюдаются в естественных каналах человека, растений и других тел, а также в специальных узких сосудах из стекла. На картинке видно, что в сообщающихся трубках разной толщины установился разный уровень воды. Отмечено, что чем тоньше сосуд, тем выше уровень воды.

Эти явления лежат в основе впитывающих свойств полотенца, питания растений, движения чернил по стержню и многих других процессов.

Капиллярные явления в природе

Описанный выше процесс чрезвычайно важен для поддержания жизнедеятельности растений. Почва довольно рыхлая, между ее частицами существуют промежутки, которые представляют собой капиллярную сеть. По этим каналам поднимается вода, питая корневую систему растений влагой и всеми необходимыми веществами.

По этим же капиллярам жидкость активно испаряется, поэтому необходимо производить вспахивание земли, которое разрушит каналы и удержит питательные вещества. И наоборот, прижатая земля быстрее испарит влагу. Этим обусловлена важность перепашки земли для удержания подпочвенной жидкости.

В растениях капиллярная система обеспечивает подъем влаги от мелких корешков до самых верхних частей, а через листья она испаряется во внешнюю среду.

Поверхностное натяжение и смачивание

В основе вопроса о поведении жидкости в сосудах лежат такие физические процессы, как поверхностное натяжение и смачивание. Капиллярные явления, обусловленные ими, изучаются в комплексе.

Под действием силы поверхностного натяжения смачивающая жидкость в капиллярах находится выше уровня, на котором она должна находиться согласно закону сообщающихся сосудов. И наоборот, несмачивающая субстанция располагается ниже этого уровня.

Так, вода в стеклянной трубке (смачивающая жидкость) поднимается на тем большую высоту, чем тоньше сосуд. Напротив, ртуть в стеклянной пробирке (несмачивающая жидкость) опускается тем ниже, чем тоньше эта емкость. Кроме того, как указано на картинке, смачивающая жидкость образует вогнутую форму мениска, а несмачивающая - выпуклую.

Смачивание

Это явление, которое происходит на границе, где жидкость соприкасается с твердым телом (другой жидкостью, газами). Оно возникает по причине особого взаимодействия молекул на границе их контакта.

Полное смачивание означает, что капля растекается по поверхности твердого тела, а несмачивание преобразует ее в сферу. На практике чаще всего встречается та или иная степень смачивания, нежели крайние варианты.

Сила поверхностного натяжения

Поверхность капли имеет шарообразную форму и причина этому закон, действующий на жидкости, - поверхностное натяжение.

Капиллярные явления связаны с тем, что вогнутая сторона жидкости в трубке стремится выпрямиться до плоского состояния благодаря силам поверхностного натяжения. Это сопровождается тем, что наружные частицы увлекают за собой вверх тела, находящиеся под ними, и субстанция поднимается вверх по трубке. Однако жидкость в капилляре не может принимать плоскую форму поверхности, и этот процесс подъема продолжается до определенного момента равновесия. Чтобы рассчитать высоту, на которую поднимется (опустится) столб воды, нужно воспользоваться формулами, которые будут представлены ниже.

Расчет высоты подъема столба воды

Момент остановки подъема воды в узкой трубке наступает, когда сила тяжести Р тяж субстанции уравновесит силу поверхностного натяжения F. Этот момент определяет высоту подъема жидкости. Капиллярные явления обусловлены двумя разнонаправленными силами:

  • сила тяжести Р тяж заставляет жидкость опускаться вниз;
  • сила поверхностного натяжения F двигает воду вверх.

Сила поверхностного натяжения, действующая по окружности, где жидкость соприкасается со стенками трубки, равна:

где r - радиус трубки.

Сила тяжести, действующая на жидкость в трубке равна:

Р тяж = ρπr2hg,

где ρ - плотность жидкости; h - высота столба жидкости в трубке;

Итак, субстанция прекратит подниматься при условии, что Р тяж = F, а это значит, что

ρπr 2 hg = σ2πr,

отсюда высота жидкости в трубке равна:

Точно так же для несмачивающей жидкости:

h - это высота опускания субстанции в трубке. Как видно из формул, высота, на которую поднимется вода в узком сосуде (опустится) обратно пропорционально радиусу емкости и плотности жидкости. Это касается смачивающей жидкости и несмачивающей. При других условиях нужно делать поправку по форме мениска, что будет представлено в следующей главе.

Лапласовское давление

Как уже отмечалось, жидкость в узких трубках ведет себя так, что создается впечатление нарушения закона сообщающихся сосудов. Этот факт всегда сопровождает капиллярные явления. Физика объясняет это с помощью лапласовского давления, которое при смачивающей жидкости направлено вверх. Опуская очень узкую трубку в воду, наблюдаем, как жидкость втягивается на определенный уровень h. По закону сообщающихся сосудов, она должна была уравновеситься с внешним уровнем воды.

Это несоответствие объясняется направлением лапласовского давления p л:

В данном случае оно направлено вверх. Вода втягивается в трубку до уровня, где приходит уравновешивание с гидростатическим давлением p г столба воды:

а если p л =p г, то можно приравнять и две части уравнения:

Теперь высоту h легко вывести в виде формулы:

Когда смачивание полное, тогда мениск, который образует вогнутая поверхность воды, имеет форму полусферы, где Ɵ=0. В таком случае радиус сферы R будет равен внутреннему радиусу капилляра r. Отсюда получаем:

А в случае неполного смачивания, когда Ɵ≠0, радиус сферы можно вычислить по формуле:

Тогда искомая высота, имеющая поправку на угол, будет равна:

h=(2σ/pqr)cos Ɵ .

Из представленных уравнений видно, что высота h обратно пропорциональна внутреннему радиусу трубки r. Наибольшей высоты вода достигает в сосудах, имеющих диаметр человеческого волоса, которые и называются капиллярами. Как известно, смачивающая жидкость втягивается вверх, а несмачивающая - выталкивается вниз.

Можно провести эксперимент, взяв сообщающиеся сосуды, где один из них широкий, а другой - очень узкий. Налив туда воду, можно отметить разный уровень жидкости, причем в варианте со смачивающей субстанцией уровень в узкой трубке выше, а с несмачивающей - ниже.

Важность капиллярных явлений

Без капиллярных явлений существование живых организмов просто невозможно. Именно по мельчайшим сосудам человеческое тело получает кислород и питательные вещества. Корни растений - это сеть капилляров, которая вытягивает влагу из земли, донося ее до самых верхних листьев.

Простая бытовая уборка невозможна без капиллярных явлений, ведь по этому принципу ткань впитывает воду. Полотенце, чернила, фитиль в масляной лампе и множество устройств работает на этой основе. Капиллярные явления в технике играют важную роль при сушке пористых тел и других процессах.

Порой эти же явления дают нежелательные последствия, например, поры кирпича впитывают влагу. Чтобы избежать отсыревания зданий под воздействием грунтовых вод, нужно защитить фундамент с помощью гидроизолирующих материалов - битума, рубероида или толя.

Промокание одежды во время дождя, к примеру, брюк до самых колен от ходьбы по лужам также обязано капиллярным явлениям. Вокруг нас множество примеров этого природного феномена.

Эксперимент с цветами

Примеры капиллярных явлений можно найти в природе, особенно если говорить о растениях. Их стволы имеют внутри множество мелких сосудов. Можно провести эксперимент с окрашиванием цветка в какой-либо яркий цвет в результате капиллярных явлений.

Нужно взять ярко окрашенную воду и белый цветок (или лист пекинской капусты, стебель сельдерея) и поставить в стакан с этой жидкостью. Через какое-то время на листьях пекинской капусты можно наблюдать, как краска продвигается вверх. Цвет растения постепенно изменится соответственно краске, в которую он помещен. Это обусловлено движением субстанции вверх по стеблям согласно тем законам, которые были рассмотрены нами в этой статье.