Положение функциональной группы спиртов. Одноатомные спирты, их физические и химические свойства

Алкоголь известен человечеству с незапамятных времен. Даже в Ветхом Завете есть упоминание о том, что Ной, выпив забродившего сока, опьянел. Но классификация спиртов сформировалась только в наши дни и путь к этому был долог и тернист.

О получении дистиллята пошли сведения от Аристотеля, который описал процесс в первом тысячелетии до н.э. (жил он в 300-х годах до н.э.). В дальнейшем алхимики именно дистилляцией пытались выделить «душу вина».

А продукт, полученный методом дистилляции, получил название «spiritus vini» , что в переводе с латыни и означало душу вина. Название «spiritus» у нас постепенно трансформировалось в .

Дистилляцию начали широко применять в различных странах, начиная с 1300-х годов. Занимались этим в европейских монастырях и называли свой продукт «aquavitae», то есть – живой водой .

В Россию технологию дистилляции привезли голландские купцы в 1386 году, однако напитки на основе дистилляции (которые в те времена водкой еще не назывались) появились во времена Ивана Грозного (16-й век).

Постепенно спирт разделился на пищевой и , который добывали из древесины.

К 1913-му году в Российской империи насчитывалось почти 2,5 тысячи заводов, производящих алкоголь. После революции их количество резко упало, но уже к концу 20-х годов значительно возросло. Во времена Второй мировой – снова спад, и подъем – в 60-х прошлого века.

Свойства этилового спирта

Впервые Парацельс в 1525 заметил, что если нагревать спирт с серной кислотой, то получается эфир, обладающий снотворным действием.

Более чем через 200 лет хирург Варрен впервые в истории усыпил пациента эфиром и провел операцию. С тех пор эфир начали активно использовать в медицине.

К особенным свойствам спирта можно отнести:

  • уничтожение болезнетворных микроорганизмов;
  • наличие дубильных веществ, способных выводить канцерогенные соединения, лечить болезни ЖКТ;
  • консервирующие способности;
  • извлечение из растительного сырья содержащегося в них вещества;
  • способность растворять многие растительные и синтетические вещества.

Состав этилена

В составе этилового спирта обязательно присутствуют:

  1. Метилен (). В разрешенных для пищевых потребностей видах – не более 0,05%.
  2. Сложные эфиры , не более 30 мг/дм3 (здесь и далее эти цифры — в пересчете на спирт безводный), а для используемого в ликеро-водочной промышленности – не более 15 мг/дм3.
  3. Сивушные масла , включая пропанол, бутанол, изобутил, изоамил – до 8 мг/дм3.
  4. Уксусный альдегид – до 5 мг/дм3 (наличие фурфурола в пищевом спирте не допускается).

Области применения

Этот продукт необходим во многих сферах человеческой жизнедеятельности и охватывает области.

1. Медицина:

  • антисептик;
  • растворитель и консервант для настоек и экстрактов;
  • противоядие в случае отравления токсичным алкоголем;
  • пеногаситель для кислорода.

2. Пищевая промышленность. Зарегистрирован как пищевая добавка E1510 . Применяется для:

  • создания разнообразных спиртосодержащих напитков;
  • растворения ароматических веществ;
  • консервации хлебобулочных и кондитерских изделий.

3. Косметика и парфюмерия. Без спирта невозможно создание духов, одеколонов, туалетной воды. Он применяется во многих лосьонах, шампунях, зубной пасте и т.д. Входит в состав аэрозолей.

4. Химическая промышленность (в том числе – для бытовых нужд). Спирт – неотъемлемая часть антифризов, стеклоомывателей, чистящих и моющих средств.

5. Топливо. В чистом виде применяется в ракетных двигателях. Участвует в создании бензина наряду с нефтепродуктами.

Марки этилового спирта для водки

Поговорим подробнее об этиловой продукции, относящейся к группе пищевых и которые, в принципе, могут употребляться внутрь в разведенном виде.

Первый сорт

Для производства алкогольных напитков не используется . Его можно условно отнести к группе пищевых. Да, это сейчас он для производства алкогольных напитков не используется. Тем более, что требования к качеству выросли в разы и себе же дороже выпускать низкопробный алкоголь.

А те, кто жил в 90-е, прекрасно помнят, как таким спиртом (канистрами), даже зарплату выдавали. И этот «бартер» считался очень даже неплохим. Да и некоторые сегодня известные ликеро-водочные предприятия начинали с того же «первосортного» алкоголя, который дешево закупали на спиртзаводах, канистрами или бочками привозили на купленный за бесценок «прогоревший» заводик.

Здесь «бодяжили» (разводили водой, добавляли сиропы, экстракты), упаковывали и отправляли в торговлю. Постепенно становясь на ноги (некоторые прогорали), начинали работать над качеством.

Из чего делают продукт первого сорта? Из того, что растет на фермерских полях и в садах:

  • любое зерно (пшеница, рожь, кукуруза, просо и т.п.);
  • свекла;
  • картофель;
  • горох;
  • фрукты;
  • отходы сахарного производства – меласса (черная патока), которая также идет на корм скота.

Причем стандартов (сколько и какого сырья брать) не существует.

Справка. Этил первого сорта сегодня используется в основном в медицине.

Да, это тот самый препарат, который продается в аптеках под названием «Спирт этиловый» 96% (бывает 70%) и с пометкой: «Для наружного применения». То есть, пить его в принципе не рекомендуют, а если и делают на нем настойки, так ведь их употребляют по 15-20 капель, а не стопками.

Высшей очистки

Хоть его название и звучит обнадеживающе, на самом деле этот вид используется исключительно в дешевых водках невысокого качества .

Применяется также для производства настоек и ликеров. Готовят его из того же сырья, что и первого сорта. Только после производства более тщательно очищают.

Базис

Сырьем для его получения выступает зерно злаковых культур и картофель . При этом картофельного крахмала в общей массе сырья должно быть не более 60%.

Эту марку используют для выпуска алкогольной продукции в среднем ценовом сегменте.

Экстра

Сырье для производства – то же, что и у «Базиса», но более высокие требования к очистке . Полученный с его помощью алкоголь также средний по ценам.

Люкс

Здесь также применяют зерно и картофель, однако доля картофельного крахмала – не более 35%, а очистка проходит несколько ступеней . «Люкс» используют для приготовления водки Премиум класса.

Альфа

Этот продукт – только зерновой из пшеницы и ржи . Других злаков не допускается, как и картофеля. Проходит несколько ступеней очистки. Используется для создания водки Супер-Премиум.

Марка спирта Этиловый
спирт, %
Уксусный альдегид в пересчете на спирт безводный,
мг/дм 3
Сивушные масла,

мг/дм 3

Изоамиловый, изобутиловый спирты, мг/дм 3 Сложные
эфиры,

мг/дм 3

Метиловый
спирт,

мг/дм 3

1 сорт 96,0 10 35 15 30 0,05
высшей
очистки
96,2 4 8 4 15 0,05
базис 96,0 5 5 5 13 0,05
экстра 96,3 2 6 3 10 0,03
люкс 96,3 2 6 2 5 0,03
альфа 96,3 2 6 2 10 0,003

Виды спирта

Различают три вида в зависимости от стадии производства.

  1. Сырец невысокой крепости . Получают его методом дистилляции. Проще говоря – это , хоть и промышленного производства, богатый сивушными маслами и прочими добавками.
  2. Ректификат . В 88% случаев его производят из сырца, прогоняя тот через ректификационные колонны. Это помогает свести к минимуму вредные примеси и заодно повысить крепость до 97°.
  3. Питьевой этиловый . Его получают путем разведения подготовленной водой ректификата до нужной градусности.

Осторожно. Питьевой спирт нельзя употреблять в неразбавленном виде.

Это приводит к ожогу слизистых оболочек, появлению гастрита, язв, онкологических заболеваний.

Сорта спирта

За рубежом существуют 3 сорта спирта.

  1. Винный либо фруктовый . Это – основа для создания бренди, кальвадоса, сливовицы и других напитков. Этот сорт скорее можно отнести к виду «сырец», поскольку получен он с помощью дистилляции (возможно – многоступенчатой), ректификацию не проходит.
  2. Зерновой (также без ректификации) – основа для виски, бурбона.
  3. Картофельный . В нем много вредных примесей, синильной кислоты, поэтому в России и СНГ чистый картофельный спирт для производства алкогольных напитков не применяется.


Какой лучше?

Ответ на этот вопрос напрашивается сразу: питьевой этиловый, прошедший ректификацию . Но не все так однозначно. Полученные путем дистилляции спирты сохраняют органолептику продукта, из которого произведены (запах, вкусовой букет). Эти качества «убивает» ректификация.

Поэтому правильнее считать, что для производства водки и различных настоек на растительном сырье не найти лучше спирта, чем , прошедший соответствующие степени очистки. Он безопасен (при разумных дозах) и при правильном производстве водок (настоек) – приятен для пития.

ОПРЕДЕЛЕНИЕ

Спирты – соединения, содержащие одну или несколько гидроксильных групп –ОН, связанных с углеводородным радикалом.

В зависимости от числа гидроксильных групп спирты делят на одно- (CH 3 OH — метанол, 2 H 5 OH — этанол), двух- (CH 2 (OH)-CH 2 -OH — этиленгликоль) и трехатомные (CH 2 (OH)-CH(OH)-CH 2 -OH — глицерин). В зависимости от того, при каком углеродном атоме находится гидроксильная группа, различают первичные (R-CH 2 -OH), вторичные (R 2 CH-OH) и третичные спирты (R 3 C-OH). В названии спиртов присутствует суффикс – ол.

Одноатомные спирты

Общая формула гомологического ряда предельных одноатомных спиртов C n H 2 n +1 OH.

Изомерия

Для предельных одноатомных спиртов характерна изомерия углеродного скелета (начиная с бутанола), а также изомерия положения гидроксильной группы (начиная с пропанола) и межклассовая изомерия с простыми эфирами.

СН 3 -СН 2 -СН 2 -СН 2 -ОН (бутанол – 1)

СН 3 -СН(СН 3)- СН 2 -ОН (2-метилпропанол – 1)

СН 3 -СН(ОН)-СН 2 -СН 3 (бутанол – 2)

СН 3 -СН 2 -О-СН 2 -СН 3 (диэтиловый эфир)

Физические свойства

Низшие спирты (до С 15) – жидкости, высшие – твердые вещества. Метанол и этанол смешиваются с водой в любых соотношениях. С ростом молекулярной массы растворимость спиртов в оде падает. Спирты имеют высокие температуры кипения и плавления за счет образования водородных связей.

Получение спиртов

Получение спиртов возможно с помощью биотехнологического (брожение) способа из древесины или сахара.

К лабораторным способам получения спиртов относятся:

— гидратация алкенов (реакция протекает при нагревании и в присутствии концентрированной серной кислоты)

СН 2 =СН 2 + Н 2 О → СН 3 ОН

— гидролиз алкилгалогенидов под действием водных растворов щелочей

СН 3 Br + NaOH → CH 3 OH + NaBr

СН 3 Br + Н 2 О → CH 3 OH + HBr

— восстановление карбонильных соединений

CH 3 -CH-O + 2[H] → CH 3 – CH 2 -OH

Химические свойства

1. Реакция, протекающие с разрывом связи О-Н:

— кислотные свойства спиртов выражены очень слабо. Спирты реагируют с щелочными металлами

2C 2 H 5 OH + 2K → 2C 2 H 5 OK + H 2

но не реагируют с щелочами. В присутствии воды алкоголяты полностью гидролизуются:

C 2 H 5 OK + Н 2 О → C 2 H 5 OH + KOH

Это означает, что спирты – более слабые кислоты, чем вода

— образование сложных эфиров под действием минеральных и органических кислот:

CH 3 -CO-OH + H-OCH 3 ↔ CH 3 COOCH 3 + H 2 O

— окисление спиртов под действием дихромата или перманганата калия до карбонильных соединений. Первичные спирты окисляются в альдегиды, которые, в свою очередь, могут окисляться в карбоновые кислоты.

R-CH 2 -OH + [O] → R-CH=O + [O] → R-COOH

Вторичные спирты окисляются в кетоны:

R-CH(OH)-R’ + [O] → R-C(R’)=O

Третичные спирты более устойчивы к окислению.

2. Реакция с разрывом связи С-О.

— внутримолекулярная дегидратация с образованием алкенов (происходит при сильном нагревании спиртов с водоотнимающими веществами (концентрированная серная кислота)):

CH 3 -CH 2 -CH 2 -OH → CH 3 -CH=CH 2 + H 2 O

— межмолекулярная дегидратация спиртов с образованием простых эфиров (происходит при слабом нагревании спиртов с водоотнимающими веществами (концентрированная серная кислота)):

2C 2 H 5 OH → C 2 H 5 -O-C 2 H 5 + H 2 O

— слабые основные свойства спиртов проявляются в обратимых реакциях с галогеноводородами:

C 2 H 5 OH + HBr →C 2 H 5 Br + H 2 O

Примеры решения задач

ПРИМЕР 1

Задание Определите молярную массу и строение спирта, если известно, что при взаимодействии 7,4 г этого спирта с металлическим натрием выделяется 1,12 л газа (н.у.), а при окислении оксидом меди(II) образуется соединение, которое дает реакцию «серебряного зеркала».
Решение Составим уравнения реакций спирта ROH с: а) натрием; б) окислителем CuO:

Из уравнения (а) методом отношений определим молярную массу неизвестного спирта:

7,4/2х = 1,12/22,4,

х = М (ROH) = 74 г/моль.

Такую молярную массу имеют спирты С 4 Н 10 О. Причем согласно условию задачи [уравнение (б)] это могут быть первичные спирты – бутанол-1 СН 3 СН 2 СН 2 СН 2 ОН или 2-метилпропанол-1 (СН 3) 2 СНСН 2 ОН.

Ответ М(С 4 Н 10 О) = 74 г/моль, это бутанол-1 или 2-метилпропанол-1

ПРИМЕР 2

Задание Какой объем (в л) кислорода (н.у.) потребуется для полного сгорания 31,25 мл этилового спирта (плотность 0,8 г/мл) и сколько граммов осадка получится при пропускании продуктов реакции через известковую воду?
Решение Найдем массу этанола:

m = ×V = 0,8×31,25 = 25 г.

Количество вещества, соответствующее такой массе:

(С 2 Н 5 ОН) = m/М = 25/46 = 0,543 моль.

Запишем уравнение реакции горения этанола:

Объем кислорода, расходуемого при сгорании этанола:

V (O 2) = 25×3×22,4/46 = 36,5 л.

Согласно коэффициентам в уравнении реакции:

(О 2) = 3 (С 2 Н 5 ОН) = 1,63 моль,

(СО 2) = 2 (С 2 Н 5 ОН) = 1,09 моль.

Студент: Рэу Д.С. Курс: 2 Группы: №25

Агропромышленный лицей №45

Г. Вельск: 2011 год

Введение

Спиртами называются органические вещества, молекулы которых содержат одну или несколько функциональных гидроксильных групп, соединенных с углеводородным радикалом.

Они могут рассматриваться поэтому как производные углеводородов, в молекулах которых один или несколько атомов водорода заменены на гидроксильные группы.

В зависимости от числа гидроксильных групп спирты подразделяются на одно-, двух-, трехатомные и т. д.

1. История открытия спиртов

Этиловый спирт, вернее, хмельной растительный напиток, его содержащий, был известен человечеству с глубокой древности.

Считается, что не менее чем за 8000 лет до нашей эры люди были знакомы с действием перебродивших фруктов, а позже - с помощью брожения получали хмельные напитки, содержащие этанол, из фруктов и мёда. Археологические находки свидетельствуют, что в Западной Азии виноделие существовало ещё в 5400-5000 годах до н. э., а на территории современного Китая, провинция Хэнань, найдены свидетельства производства «вина», вернее ферментированных смесей из риса, мёда, винограда и, возможно, других фруктов, в эпоху раннего неолита: от 6500 до 7000 гг. до н. э.

Впервые спирт из вина получили в VI-VII веках арабские химики, а первую бутылку крепкого алкоголя (прообраза современной водки) изготовил персидский алхимик Ар-Рази в 860 году. В Европе этиловый спирт был получен из продуктов брожения в XI-XII веке, в Италии.

В Россию спирт впервые попал в 1386 году, когда генуэзское посольство привезло его с собой под названием «аква вита» и презентовала царскому двору.

В 1660 году английский химик и богослов Роберт Бойль впервые получил обезвоженный этиловый спирт, а также открыл его некоторые физические и химические свойства, в частности обнаружив способность этанола выступать в качестве высокотемпературного горючего для горелок. Абсолютированный спирт был получен в 1796 году русским химиком Т. Е. Ловицем.

В 1842 году немецкий химик Я. Г. Шиль открыл, что спирты образуют гомологический ряд, отличаясь на некоторую постоянную величину. Правда, он ошибся, описав её как C2H2. Спустя два года, другой химик Шарль Жерар установил верное гомологическое соотношение CH2 и предсказал формулу и свойства неизвестного в те годы пропилового спирта. В 1850 году английский химик Александр Вильямсон, исследуя реакцию алкоголятов с иодистым этилом, установил, что этиловый спирт является производным от воды с одним замещенным водородом, экспериментально подтвердив формулу C2H5OH. Впервые синтез этанола действием серной кислоты на этилен осуществил в 1854 году французский химик Марселен Бертло.

Первое исследование метилового спирта было сделано в 1834 году французскими химиками Жаном-Батистом Дюма и Эженом Пелиго; они назвали его «метиловым или древесным спиртом», так как он был обнаружен в продуктах сухой перегонки древесины. Синтез метанола из метилхлорида осуществил французский химик Марселен Бертло в 1857 году. Им же, впервые был открыт в 1855 году изопропиловый спирт, действием на пропилен серной кислотой.

Впервые третичный спирт (2-метил-пропан-2-ол) синтезировал в 1863 году известный русский ученый А. М. Бутлеров, положив начало целой серии экспериментов в этом направлении.

Двухатомный спирт - этиленгликоль - впервые был синтезирован французским химиком А.Вюрцем в 1856 году. Трехатомный спирт - глицерин - был обнаружен в природных жирах ещё в 1783 году шведским химиком Карлом Шееле, однако его состав был открыт только в 1836 году, а синтез осуществлен из ацетона в 1873 году Шарлем Фриделем.

2. Нахождение в природе

Спирты имеют самое широкое распространение в природе, особенно в виде сложных эфиров, однако и в свободном состоянии их можно встретить достаточно часто.

Метиловый спирт в небольшом количестве содержится в некоторых растениях, например: борщевике (Heracleum).

Этиловый спирт - естественный продукт спиртового брожения органических продуктов, содержащих углеводы, часто образующийся в прокисших ягодах и фруктах без всякого участия человека. Кроме того, этанол является естественным метаболитом и содержится в тканях и крови животных и человека.

В эфирных маслах зеленых частей многих растений содержится «спирт листьев», придающий им характерный запах.

Фенилэтиловый спирт - душистый компонент розового эфирного масла.

Очень широко представлены в растительном мире терпеновые спирты, многие из которых являются душистыми веществами

3. Физические свойства

Этиловый спирт (этанол) С2Н5ОН - бесцветней жидкость, легко испаряющаяся (температура кипения 64, 7 ºС, температура плавления - 97, 8 ºС, оптическая плотность 0, 7930) . Спирт, содержащий 4-5 % воды, называют ректификатом, а содержащий только доли процента воды - абсолютным спиртом. Такой спирт получают химической обработкой в присутствии водоотнимающих средств (например, свежепрокаленного СаО).

4. Химические свойства

Как у всех кислородосодержащих соединений, химические свойства этилового спирта определяются, в первую очередь, функциональными группами и, в известной степени, строением радикала.

Характерной особенностью гидроксильной группы этилового спирта является подвижность атома водорода, что объясняется электронным строением гидроксильной группы. Отсюда способность этилового спирта к некоторым реакциям замещения, например, щелочными металлами. С другой стороны, имеет значение и характер связи углерода с кислородом. Вследствие большой электроотрицательности кислорода по сравнению с углеродом, связь углерод-кислород также в некоторой степени поляризована с частичным положительным зарядом у атома углерода и отрицательным – у кислорода. Однако, эта поляризация не приводит к диссоциации на ионы, спирты не являются электролитами, а представляют собой нейтральные соединения, не изменяющие окраску индикаторов, но они имеют определенный электрический момент диполя.

Спирты являются амфотерными соединениями, то есть могут проявлять как свойства кислот, так и свойства оснований.

Физико-химические свойства спиртов определяются в основном строением углеводородной цепи и функциональной группы −OH, а также их взаимным влиянием:

1) Чем больше заместитель, тем сильнее он влияет на функциональную группу, снижая полярность связи O-Н. Реакции, основанные на разрыве этой связи, протекают более медленно.

2) Гидроксильная группа −ОН уменьшает электронную плотность вдоль прилегающих связей углеродной цепи (отрицательный индуктивный эффект).

Все химические реакции спиртов можно разделить на три условных группы, связанных с определёнными реакционными центрами и химическими связями:

Разрыв связи O−H;

Разрыв или присоединение по связи С−OH;

Разрыв связи −СOH.

5. Получение и производство

До начала 30-х годов 20 века его получали исключительно сбраживанием пищи углеводсодержащего сырья, и при обработки зерна (рожь, ячмень, кукуруза, овёс, просо) . В 30-е по 50-е годы было разработано несколько способов синтеза из химического сырья

Реакция начинается с атаки ионом водорода того углеродного атома, который связан с большим числом водородных атомов и является поэтому более электроотрицательным, чем соседний углерод. После этого к соседнему углероду присоединяется вода с выбросом Н+. Этим методом в промышленном масштабе готовят этиловый, втор-пропиловый и трет-бутиловый спирты.

Для получения этилового спирта издавна пользуются различными сахаристыми веществами, например, виноградным сахаром, или глюкозой, которая путем "брожения", вызываемого действием ферментов (энзимов), вырабатываемых дрожжевыми грибками, превращается в этиловый спирт.

Спирты могут быть получены из самых разных классов соединений, таких как углеводороды, алкилгалогениды, амины, карбонильные соединения, эпоксиды. Существует множество методов получения спиртов, среди которых выделим наиболее общие:

реакции окисления - основаны на окислении углеводородов содержащих кратные или активированные C−H связи;

реакции восстановления - восстановление карбонильных соединений: альдегидов, кетонов, карбоновых кислот и сложных эфиров;

реакции гидратации - кислотно-катализируемое присоединение воды к алкенам (гидратация);

реакции присоединения;

реакции замещения (гидролиза) - реакции нуклеофильного замещения, при которых имеющиеся функциональные группы замещаются на гидроксильную группу;

синтезы с использованием металлорганических соединений;

6. Применение

Этиловый спирт широко используют в различных областях промышленности и прежде всего в химической. Из него получают синтетический каучук, уксусную кислоту, красители, эссенции, фотопленку, порох, пластмассы. Спирт является хорошим растворителем и антисептиком. Поэтому он находит применение в медицине.

Основным спиртом, используемых в медицинских целях, является этанол. Его используют в качестве наружного антисептического и раздражающего средства для приготовления компрессов и обтираний. Ещё более широко применяется этиловый спирт для приготовления различных настоек, разведений, экстрактов и прочих лекарственных форм.

Спирты довольно широко используются в качестве душистых веществ для составления композиций в парфюмерно-косметической промышленности.

В пищевой промышленности широкое применение спиртов общеизвестно: основой всех алкогольных напитков является этанол, который получается при сбраживании пищевого сырья - винограда, картофеля, пшеницы и прочих крахмало- или сахаросодержащих продуктов. Кроме того, этиловый спирт используется в качестве компонента (растворителя) некоторых пищевых и ароматических эссенций (ароматизаторов), широко используемых в кулинарии, при выпечке кондитерских изделий, производстве шоколада, конфет, напитков, мороженного, варений, желе, джемов, конфитюров и пр.

Которые в своем составе содержат одну или несколько гидроксильных группу. В зависимости от количества групп ОН эти делятся на одноатомные спирты, трехатомные и т.д. Чаще всего эти сложные вещества рассматривают как производные углеводородов, молекулы которых претерпели изменения, т.к. один или несколько атомов водорода заместились на гидроксильную группу.

Наиболее простыми представителями данного класса являются одноатомные спирты, общая формула которых выглядит так: R-OH или

Cn+ H 2n+1OH.

  1. Спирты, содержащие до 15 атомов углерода - жидкости, 15 и более - твердые вещества.
  2. Растворимость в воде зависит от молекулярной массы, чем она выше, тем спирт хуже растворяется воде. Так, низшие спирты (до пропанола) смешиваются с водой в любых пропорциях, а высшие практически не растворимы в ней.
  3. Температура кипения также возрастает с увеличением атомной массы, например, t кип. СН3ОН= 65 °С, а t кип. С2Н5ОН =78 °С.
  4. Чем выше температура кипения, тем ниже летучесть, т.е. вещество плохо испаряется.

Данные физические свойства насыщенных спиртов с одной гидроксильной группой можно объяснить возникновением межмолекулярной водородной связи между отдельными молекулами самого соединения или спирта и воды.

Одноатомные спирты способны вступать в такие химические реакции:

Рассмотрев химические свойства алкоголей, можно сделать вывод, что одноатомные спирты - это амфотерные соединения, т.к. они могут реагировать с щелочными металлами, проявляя слабые и с галогенводородами, проявляя основные свойства. Все химические реакции идут с разрывом связи О-Н или С-О.

Таким образом, предельные одноатомные спирты - это сложные соединения с одной группой ОН, не имеющие свободных валентностей после образования связи С-С и проявляющие слабо свойства и кислот, и оснований. За счет своих физических и химических свойств они нашли широкое применение в органическом синтезе, в производстве растворителей, добавок к топливу, а также в пищевой промышленности, медицине, косметологии (этанол).

Содержание статьи

СПИРТЫ (алкоголи) – класс органических соединений, содержащих одну или несколько группировок С–ОН, при этом гидроксильная группа ОН связана с алифатическим атомом углерода (соединения, у которых атом углерода в группировке С–ОН входит в состав ароматического ядра, называются фенолами)

Классификация спиртов разнообразна и зависит от того, какой признак строения взят за основу.

1. В зависимости от количества гидроксильных групп в молекуле спирты делят на:

а) одноатомные (содержат одну гидроксильную ОН-группу), например, метанол СН 3 ОН, этанол С 2 Н 5 ОН, пропанол С 3 Н 7 ОН

б) многоатомные (две и более гидроксильных групп), например, этиленгликоль

HO–СH 2 –CH 2 –OH, глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 .

Соединения, в которых у одного атома углерода есть две гидроксильных группы, в большинстве случаев нестабильны и легко превращаются в альдегиды, отщепляя при этом воду: RCH(OH) 2 ® RCH=O + H 2 O

2. По типу атома углерода, с которым связана группа ОН, спирты делят на:

а) первичные, у которых ОН-группа связана с первичным атомом углерода. Первичным называют атом углерода (выделен красным цветом), связанный всего с одним углеродным атомом. Примеры первичных спиртов – этанол СH 3 –C H 2 –OH, пропанол СH 3 –CH 2 –C H 2 –OH.

б) вторичные, у которых ОН-группа связана с вторичным атомом углерода. Вторичный атом углерода (выделен синим цветом) связан одновременно с двумя атомами углерода, например, вторичный пропанол, вторичный бутанол (рис. 1).

Рис. 1. СТРОЕНИЕ ВТОРИЧНЫХ СПИРТОВ

в) третичные, у которых ОН-группа связана с третичным атомом углерода. Третичный углеродный атом (выделен зеленым цветом) связан одновременно с тремя соседними атомами углерода, например, третичный бутанол и пентанол (рис. 2).

Рис. 2. СТРОЕНИЕ ТРЕТИЧНЫХ СПИРТОВ

В соответствии с типом углеродного атома присоединенную к нему спиртовую группу также называют первичной, вторичной или третичной.

У многоатомных спиртов, содержащих две или более ОН-групп, могут присутствовать одновременно как первичные, так и вторичные НО-группы, например, в глицерине или ксилите (рис. 3).

Рис. 3. СОЧЕТАНИЕ В СТРУКТУРЕ МНОГОАТОМНЫХ СПИРТОВ ПЕРВИЧНЫХ И ВТОРИЧНЫХ ОН-ГРУПП .

3. По строению органических групп, связанных ОН-группой, спирты подразделяют на предельные (метанол, этанол, пропанол), непредельные, например, аллиловый спирт СН 2 =СН–СН 2 –ОН, ароматические (например, бензиловый спирт С 6 Н 5 СН 2 ОН), содержащие в составе группы R ароматическую группу.

Непредельные спирты, у которых ОН-группа «примыкает» к двойной связи, т.е. связана с атомом углерода, участвующим одновременно в образовании двойной связи (например, виниловый спирт СН 2 =СН–ОН), крайне нестабильны и сразу же изомеризуются (см .ИЗОМЕРИЗАЦИЯ) в альдегиды или кетоны :

CH 2 =CH–OH ® CH 3 –CH=O

Номенклатура спиртов.

Для распространенных спиртов, имеющих простое строение, используют упрощенную номенклатуру: название органической группы преобразуют в прилагательное (с помощью суффикса и окончания «овый ») и добавляют слово «спирт»:

В том случае, когда строение органической группы более сложное, используют общие для всей органической химии правила. Названия, составленные по таким правилам, называют систематическими. В соответствии с этими правилами, углеводородную цепь нумеруют с того конца, к которому ближе расположена ОН-группа. Далее используют эту нумерацию, чтобы указать положение различных заместителей вдоль основной цепи, в конце названия добавляют суффикс «ол» и цифру, указывающую положение ОН-группы (рис. 4):

Рис. 4. СИСТЕМАТИЧЕСКИЕ НАЗВАНИЯ СПИРТОВ . Функциональные (ОН) и замещающие (СН 3) группы, а также соответствующие им цифровые индексы выделены различающимися цветами.

Систематические названия простейших спиртов составляют по тем же правилам: метанол, этанол, бутанол. Для некоторых спиртов сохранились тривиальные (упрощенные) названия, сложившиеся исторически: пропаргиловый спирт НСє С–СН 2 –ОН, глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 , фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH.

Физические свойства спиртов.

Спирты растворимы в большинстве органических растворителей, первые три простейших представителя – метанол, этанол и пропанол, а также третичный бутанол (Н 3 С) 3 СОН – смешиваются с водой в любых соотношениях. При увеличении количества атомов С в органической группе начинает сказываться гидрофобный (водоотталкивающий) эффект, растворимость в воде становится ограниченной, а при R, содержащем свыше 9 атомов углерода, практически исчезает.

Благодаря наличию ОН-групп между молекулами спиртов возникают водородные связи.

Рис. 5. ВОДОРОДНЫЕ СВЯЗИ В СПИРТАХ (показаны пунктиром)

В результате у всех спиртов более высокая температура кипения, чем у соответствующих углеводородов, например, Т. кип. этанола +78° С, а Т. кип. этана –88,63° С; Т. кип. бутанола и бутана соответственно +117,4° С и –0,5° С.

Химические свойства спиртов.

Спирты отличаются разнообразными превращениями. Реакции спиртов имеют некоторые общие закономерности: реакционная способность первичных одноатомных спиртов выше, чем вторичных, в свою очередь, вторичные спирты химически более активны, чем третичные. Для двухатомных спиртов, в том случае, когда ОН-группы находятся у соседних атомов углерода, наблюдается повышенная (в сравнении с одноатомными спиртами) реакционная способность из-за взаимного влияния этих групп. Для спиртов возможны реакции, проходящие с разрывом как С–О, так и О–Н – связей.

1. Реакции, протекающие по связи О–Н.

При взаимодействии с активными металлами (Na, K, Mg, Al) спирты проявляют свойства слабых кислот и образуют соли, называемые алкоголятами или алкоксидами:

2CH 3 OH + 2Na ® 2CH 3 OK + H 2

Алкоголяты химически не стабильны и при действии воды гидролизуются с образованием спирта и гидроксида металла:

C 2 H 5 OК + H 2 O ® C 2 H 5 OH + КOH

Эта реакция показывает, что спирты в сравнении с водой представляют собой более слабые кислоты (сильная кислота вытесняет слабую), кроме того, при взаимодействии с растворами щелочей спирты не образуют алкоголяты. Тем не менее, в многоатомных спиртах (в том случае, когда ОН-группы присоединены к соседним атомам С) кислотность спиртовых групп намного выше, и они могут образовывать алкоголяты не только при взаимодействии с металлами, но и со щелочами:

HO–CH 2 –CH 2 –OH + 2NaOH ® NaO–CH 2 –CH 2 –ONa + 2H 2 O

Когда в многоатомных спиртах НО-группы присоединены к не соседствующим атомам С, свойства спиртов близки к одноатомным, поскольку взаимовлияние НО-групп не проявляется.

При взаимодействии с минеральными или органическими кислотами спирты образуют сложные эфиры – соединения, содержащие фрагмент R–O–A (А – остаток кислоты). Образование сложных эфиров происходит и при взаимодействии спиртов с ангидридами и хлорангидридами карбоновых кислот (рис. 6).

При действии окислителей (К 2 Cr 2 O 7 , KMnO 4) первичные спирты образуют альдегиды, а вторичные – кетоны (рис.7)

Рис. 7. ОБРАЗОВАНИЕ АЛЬДЕГИДОВ И КЕТОНОВ ПРИ ОКИСЛЕНИИ СПИРТОВ

Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С, что молекула исходного спирта (рис.8).

Рис. 8. ВОССТАНОВЛЕНИЕ БУТАНОЛА

2. Реакции, протекающие по связи С–О.

В присутствии катализаторов или сильных минеральных кислот происходит дегидратация спиртов (отщепление воды), при этом реакция может идти в двух направлениях:

а) межмолекулярная дегидратация с участием двух молекул спирта, при этом связи С–О у одной из молекул разрываются, в результате образуются простые эфиры – соединения, содержащие фрагмент R–О–R (рис. 9А).

б) при внутримолекулярной дегидратации образуются алкены - углеводороды с двойной связью. Часто оба процесса – образование простого эфира и алкена – протекают параллельно (рис. 9Б).

В случае вторичных спиртов при образовании алкена возможны два направления реакции (рис. 9В), преимущественное направление то, при котором в процессе конденсации отщепляется водород от наименее гидрогенизированного атома углерода (отмечен цифрой 3), т.е. окруженного меньшим количеством атомов водорода (в сравнении с атомом 1). Показанные на рис. 10 реакции используют для получения алкенов и простых эфиров.

Разрыв связи С–О в спиртах происходит также при замещении ОН-группы галогеном, или аминогруппой (рис. 10).

Рис. 10. ЗАМЕНА ОН-ГРУППЫ В СПИРТАХ ГАЛОГЕНОМ ИЛИ АМИНОГРУППОЙ

Реакции, показанные на рис. 10, используют для получения галогенуглеводородов и аминов.

Получение спиртов.

Некоторые из показанных выше реакций (рис. 6,9,10) обратимы и при изменении условий могут протекать в противоположном направлении, приводя к получению спиртов, например при гидролизе сложных эфиров и галогенуглеводородов (рис.11А и Б, соответственно), а также гидратацией алкенов – присоединением воды (рис.11В).

Рис. 11. ПОЛУЧЕНИЕ СПИРТОВ ГИДРОЛИЗОМ И ГИДРАТАЦИЕЙ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Реакция гидролиза алкенов (рис. 11, схема В) лежит в основе промышленного производства низших спиртов, содержащих до 4 атомов С.

Этанол образуется и при так называемом спиртовом брожении сахаров, например, глюкозы С 6 Н 12 О 6 . Процесс протекает в присутствии дрожжевых грибков и приводит к образованию этанола и СО 2:

С 6 Н 12 О 6 ® 2С 2 Н 5 ОН + 2СО 2

Брожением можно получить не более чем 15%-ный водный раствор спирта, поскольку при более высокой концентрации спирта дрожжевые грибки погибают. Растворы спирта более высокой концентрации получают перегонкой.

Метанол получают в промышленности восстановлением монооксида углерода при 400° С под давлением 20–30 МПа в присутствии катализатора, состоящего из оксидов меди, хрома, и алюминия:

СО + 2 Н 2 ® Н 3 СОН

Если вместо гидролиза алкенов (рис. 11) проводить окисление, то образуются двухатомные спирты (рис. 12)

Рис. 12. ПОЛУЧЕНИЕ ДВУХАТОМНЫХ СПИРТОВ

Применение спиртов.

Способность спиртов участвовать в разнообразных химических реакциях позволяет их использовать для получения всевозможных органических соединений: альдегидов, кетонов, карбоновых кислот простых и сложных эфиров, применяемых в качестве органических растворителей, при производстве полимеров, красителей и лекарственных препаратов.

Метанол СН 3 ОН используют как растворитель, а также в производстве формальдегида, применяемого для получения фенолформальдегидных смол, в последнее время метанол рассматривают как перспективное моторное топливо. Большие объемы метанола используют при добыче и транспорте природного газа. Метанол – наиболее токсичное соединение среди всех спиртов, смертельная доза при приеме внутрь – 100 мл.

Этанол С 2 Н 5 ОН – исходное соединение для получения ацетальдегида, уксусной кислоты, а также для производства сложных эфиров карбоновых кислот, используемых в качестве растворителей. Кроме того, этанол – основной компонент всех спиртных напитков, его широко применяют и в медицине как дезинфицирующее средство.

Бутанол используют как растворитель жиров и смол, кроме того, он служит сырьем для получения душистых веществ (бутилацетата, бутилсалицилата и др.). В шампунях он используется как компонент, повышающий прозрачность растворов.

Бензиловый спирт С 6 Н 5 –CH 2 –OH в свободном состоянии (и в виде сложных эфиров) содержится в эфирных маслах жасмина и гиацинта. Он обладает антисептическими (обеззараживающими) свойствами, в косметике он используется как консервант кремов, лосьонов, зубных эликсиров, а в парфюмерии - как душистое вещество.

Фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH обладает запахом розы , содержится в розовом масле, его используют в парфюмерии.

Этиленгликоль HOCH 2 –CH 2 OH используют в производстве пластмасс и как антифриз (добавка, снижающая температуру замерзания водных растворов), кроме того, при изготовлении текстильных и типографских красок .

Диэтиленгликоль HOCH 2 –CH 2 OCH 2 –CH 2 OH используют для заполнения тормозных гидравлических приспособлений, а также в текстильной промышленности при отделке и крашении тканей.

Глицерин HOCH 2 –CH(OH)–CH 2 OH применяют для получения полиэфирных глифталевых смол, кроме того, он является компонентом многих косметических препаратов. Нитроглицерин (рис. 6) – основной компонент динамита, применяемого в горном деле и железнодорожном строительстве в качестве взрывчатого вещества.

Пентаэритрит (HOCH 2) 4 С применяют для получения полиэфиров (пентафталевые смолы), в качестве отвердителя синтетических смол, как пластификатор поливинилхлорида, а также в производстве взрывчатого вещества тетранитропентаэритрита.

Многоатомные спирты ксилит НОСН2–(СНОH)3–CН2ОН и сорбит НОСН2– (СНОН)4–СН2OН имеют сладкий вкус, их используют вместо сахара в производстве кондитерских изделий для больных диабетом и людей страдающих от ожирения. Сорбит содержится в ягодах рябины и вишни .

Михаил Левицкий