Производная z x. Частные производные второго порядка

Пусть задана функция . Так как x и y – независимые переменные, то одна из них может изменяться, а другая сохранять свое значение. Дадим независимой переменной x приращение , сохраняя значение y неизменным. Тогда z получит приращение, которое называется частным приращением z по x и обозначается . Итак, .

Аналогично получаем частное приращение z по y: .

Полное приращение функции z определяется равенством .

Если существует предел , то он называется частной производной функции в точке по переменной x и обозначается одним из символов:

.

Частные производные по x в точке обычно обозначают символами .

Аналогично определяется и обозначается частная производная от по переменной y:

Таким образом, частная производная функции нескольких (двух, трех и больше) переменных определяется как производная функции одной из этих переменных при условии постоянства значений остальных независимых переменных. Поэтому частные производные функции находится по формулам и правилам вычисления производных функции одной переменной (при этом соответственно x или y считаются постоянной величиной).

Частные производные и называют частными производными первого порядка. Их можно рассматривать как функции от . Эти функции могут иметь частные производные, которые называются частными производными второго порядка. Они определяются и обозначаются следующим образом:

; ;

; .


Дифференциалы 1 и 2 порядка функции двух переменных.

Полный дифференциал функции (формула 2.5) называют дифференциалом первого порядка.

Формула для вычисления полного дифференциала имеет следующий вид:

(2.5) или , где ,

частные дифференциалы функции .

Пусть функция имеет непрерывные частные производные второго порядка. Дифференциал второго порядка определяется по формуле . Найдем его:


Отсюда: . Символически это записывается так:

.


НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ.

Первообразная функции, неопределенный интеграл, свойства.

Функция F(x) называется первообразной для данной функ­ции f{x), если F"(x)=f(x), или, что то же, если dF(x)=f(x)dx.

Теорема. Если функция f(x), определенная в некотором промежутке (X) конечной или бесконечной длины, имеет одну первообразную, F(x), то она имеет и бесконечно много первообразных; все они содержатся в выра­жении F(x)+С, где С - произвольная постоянная.

Совокупность всех первообразных для данной функции f(x), определенной в некотором промежутке или на некотором отрезке конечной или бесконечной длины, называется неопределенным интегралом от функ­ции f(x) [или от выражения f(x)dx ] и обозначается символом .



Если F(x) есть одна из первообразных для f(x), то согласно теореме о первообразных

, где С есть произвольная постоянная.

По определению первообразной F"(x)=f(x) и, следовательно, dF(x)=f(x) dx. В формуле (7.1), f(x) называется подинтегральной функцией, а f(x) dx - подинтегральным выражением.

На данном уроке мы познакомимся с понятием функции двух переменных, а также подробно рассмотрим наиболее распространенное задание – нахождение частных производных первого и второго порядка, полного дифференциала функции.

Для эффективного изучения нижеизложенного материала Вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? и Производная сложной функции . Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде.

Начнем с самого понятия функции двух переменных, постараемся ограничиться минимумом теории, так как сайт имеет практическую направленность. Функция двух переменных обычно записывается как , при этом переменные , называются независимыми переменными или аргументами .

Пример: - функция двух переменных.

Иногда используют запись . Также встречаются задания, где вместо буквы используется буква .

Полезно знать геометрический смысл функций. Функции одной переменной соответствует определенная линия на плоскости, например, – всем знакомая школьная парабола. Любая функция двух переменных с геометрической точки зрения представляет собой поверхность в трехмерном пространстве (плоскости, цилиндры, шары, параболоиды и т.д.). Но, собственно, это уже аналитическая геометрия, а у нас на повестке дня математический анализ.

Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной.

Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций. Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас.



Пример 1

Найти частные производные первого и второго порядка функции

Сначала найдем частные производные первого порядка. Их две.

Обозначения:

Или – частная производная по «икс»

Или – частная производная по «игрек»

Начнем с .

Важно! Когда мы находим частную производную по «икс», то переменнаясчитается константой (постоянным числом).

Решаем. На данном уроке будем сразу приводить полное решение, а комментарии давать ниже.

Комментарии к выполненным действиям:

(1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом .

Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае, если Вы где-нибудь нарисуете «штрих» без , то преподаватель, как минимум, может поставить рядом с заданием (сразу откусить часть балла за невнимательность).

(2) Используем правила дифференцирования ; . Для простого примера, как этот, оба правила вполне можно применить на одном шаге. Обратите внимание на первое слагаемое: так как считается константой, а любую константу можно вынести за знак производной , то мы выносим за скобки. То есть в данной ситуации ничем не лучше обычного числа. Теперь посмотрим на третье слагаемое : здесь, наоборот, выносить нечего. Так как константа, то – тоже константа, и в этом смысле она ничем не лучше последнего слагаемого – «семерки».

(2) Используем таблицу производных элементарных функций. Мысленно поменяем в таблице все «иксы» на «игреки». То есть данная таблица рАвно справедлива для(и вообще для любой буквы). В данном случае, используемые нами формулы имеют вид: и .

Итак, частные производные первого порядка найдены

Пример. Найти частные производные функции y x yxz

Решение. Полагая y =const , находимy xy x z

Полагая x =const , находим 2 2) 1 (1 y x x y xx y z

Пример. Найти значения частных производных функции в точке M (1, – 1, 0). xyzyxu)ln(

Решение. Полагая y = const , z = const , находим 10 11 22 1)02(1 22 22 , Ì czy yz yx x yzx yxx u

Аналогично находим 10 11 22 1)20(1 22 22 , M czx xz yx y xzy yxy u 110 , M cyx xyxy z u

Геометрическим смыслом частной производной (например,) является тангенс угла наклона касательной, проведенной в точке M 0 (x 0 , y 0 , z 0) к сечению поверхности плоскостью у = у 0. xz

Предположим, что функция z = f (x , y) имеет непрерывные частные производные), (yxf x z x), (yxf y z y

Эти производные в свою очередь являются функциями независимых переменных x и y. Будем называть и частными производными 1 — го порядка.), (yxf x), (yxf y

Частными производными 2 -го порядка называются частные производные от частных производных 1 -го порядка. Для функции z = f (x , y) двух переменных можно найти четыре частные производные 2 -го порядка, которые обозна-чаются следующим обр-м:

В общем случае смешанные частные производные могут не совпадать, однако для них справедлива теорема: Теорема. Если смешанные частные производные и непрерывны в некоторой точке M (x , y) , то они равны, т. е. xyfyxf), (yxfyxf yxxy

Ч астными производными n – го порядка называются частные производные от частных производных (n – 1)– го порядка. Их обозначают и т. д. 221 , yx z x z n n n

Пример. Найти частные производные 2 -го порядка функции)1 sin(23 xyyxz

Решение. Последовательно находим); 1 cos(3 22 xyyyx x z cy); 1 cos(2 3 xyxyx y z cx

); 1 sin(6)1 cos(3 22 22 2 2 xyyxy xyyyx xx z cy cy); 1 sin()1 cos(6)1 cos(3 2 22 2 xyyx xyyyx z cx cx

)1 sin()1 cos(6 1 cos(2 2 3 2 xyyx xyxyx xxy z cy cy)1 sin(2)1 cos(2 23 3 2 2 xyxx xyxyx yy z cx cx

Рассмотрим функцию z = f (x , y). Дадим аргументу x приращение Δ x , а аргументу y приращение Δ y. Тогда z получит приращение которое называется полным приращением функции z.), (yxfyyxxfz

Предположим, что f (x , y) в точке M (x , y) имеет непрерывные частные производные.

Определение. Дифференциалом 1 -го порядка функции z = f (x , y) называется главная часть полного приращения Δ z этой функции, линейная относительно Δ x и Δ y , обозначается символом dz или df и вычисляется по формуле y y z x x z zd

Так как дифференциалы независимых переменных совпадают с их приращениями, т. е. dx = Δ x , dy = Δ y , то эту формулу можно записать в виде: dy y z dx x z zd

Геометрическим смыслом полного дифференциала функции двух переменных f (x , y) в точке (х 0 , у 0) является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки (х 0 , у 0) к точке (х 0 + х, у 0 + у).

Геометрический смысл полного дифференциала функции двух переменных является пространственным аналогом геометрического смысла дифференциала функции одной переменной.

Дифференциалом 2 -го порядка функции z = f (x , y) называется дифференциал от ее дифференциала 1 -го порядка и обозначается)(zzddd

Если все частные производные 2 -го порядка функции z = f (x , y) непрерывны, то имеет место формула: 2 2 2 y y z yx yx z x x z zddddd

Пример. Найти дифференциалы 1 -го и 2 -го порядков функции y x yz 2 x

Решение. Найдем частные производные 1 -го и 2 -го порядков: y yx x z 1 2 2 2 y x x y z

; 202 1 2 2 2 yy y xy xx z cy ; 1 2 2 2 y xy yyx z cx 33 22 22 2)2(0 y x yx y x x y y z cy

Следовательно, дифференциалы 1 -го и 2 -го порядков запишутся в виде: dy y x xdx y xyz)() 1 2(d 2 2 2 32 222) 1 2(22 y y x yx y xxyzddddd

Пусть функция f (x , y) дифференцируема в точке (х, у). Найдем полное приращение этой функции:), (yxfyyxxfz zyxfyyxxf), (

Если подставить в эту формулу выражение то получим приближенную формулу: y yf x xf dzz y y yxf x x yxf yyxxf), (

Пример. Вычислить приближенно значение исходя из значения функции при x = 1, y = 2, z = 102, 1 ln 04, 1 99, 1 zxu y ln

Решение. Из заданного выражения определим x = 1, 04 – 1 = 0, 04, y = 1, 99 – 2 = -0, 01, z = 1, 02 – 1 = 0, 02. Найдем значение функции u (x , y , z) = 11 ln

Находим частные производные: 1 12 12 ln 2 1 zx xy x u y y 0 ln 2 ln zx xx y u y y

Полный дифференциал функции u равен: 2 1 ln 2 1 zx z z u y

05, 001, 004, 0 02, 0 21 01, 0004, 01 02, 001, 004, 0 zu yu xudu

Точное значение этого выражения: 1, 049275225687319176. 05, 105, 01)1, 2, 1(02, 1 ln 04, 1 99, 1 duu

Касательной плоскостью к поверхности в ее точке M 0 называется плоскость, которая содержит все касательные к кривым, проведенным на поверхности через эту точку.

Нормалью к поверхности в точке M 0 называется прямая, проходящая через эту точку и перпендикулярная касательной плоскости, проведенной в данной точке.

Если поверхность задана уравнением F (x , y , z) = 0 то уравнение касательной плоскости в точке M 0 (x 0 , y 0 , z 0) имеет вид: 0))((00 0000 zz. MF yy. MFxx. MF z yx

Уравнения нормали, проведенной к поверхности в точке M 0 (x 0 , y 0 , z 0) , запишутся следующим образом:)()()(0 0 0 MF zz MF yy MF xx zyx

Если поверхность задана уравнением z = f (x , y) , то уравнение касательной плоскости в точке M 0 (x 0 , y 0 , z 0) имеет вид:))(, (000 0000 yyyxf xxyxfzz y x

а уравнения нормали запишутся так: 1), (0 00 0 zz yxf yy yxf xx yx

Пример. Составить уравнения касательной плоскости и нормали к поверхности в точке M 0 (x 0 , y 0 , z 0) , если 01332 22 yzxzxyyx. 1, 2 00 yx

Решение. Подставляя x 0 и y 0 в уравнение поверхности, находим значение z 0: откуда находим z 0 = 1. Следовательно, M 0 (2, – 1, 1) – точка касания. 01)1(32)1(23)1(2400 2 zz

По условию задачи поверхность задана неявно. Обозначим и найдем частные производные в точке M 0 (2, – 1, 1) : 1332), (22 yzxzxyyxzyx.

, 32 zyx. F x 21)1(322)(0 MF x , 334 zxy. F y 51323)1(4)(0 MF y , 3 yx. F z 1)1(32)(0 MF z

Подставля ем найденные значения частных производных в уравнение касательной плоскости 0))((00 0000 zz. MF yy. MFxx. MF z yx

У равнения нормали име ю т вид 1 1 5 1 2 2 zyx

Определение. Функция z = f (x , y) имеет максимум в точке M 0 (x 0 , y 0) , если существует такая окрестность этой точки, что для любых точек M (x , y) из этой окрестности выполняется неравенство), (00 yxfyxf

Частные производные функции нескольких переменных являются функциями тех же переменных. Эти функции, в свою очередь, могут иметь частные производные, которые мы будем называть вторыми частными производными (или частными производными второго порядка) исходной функции.

Так, например, функция двух переменных имеет четыре частных производных второго порядка, которые определяются и обозначаются следующим образом:

Функция трех переменных имеет девять частных производных второго порядка:

Аналогично определяются и обозначаются частные производные третьего и более высокого порядка функции нескольких переменных: частной производной порядка функции нескольких переменных называется частная производная первого порядка от частной производной порядка той же функции.

Например, частная производная третьего порядка функции есть частная производная первого порядка по у от частной производной второго порядка

Частная производная второго или более высокого порядка, взятая по нескольким различным переменным, называется смешанной частной производной.

Например, частные производные

являются смешанными частными производными функции двух переменных .

Пример. Найти смешанные частные производные второго порядка функции

Решение. Находим частные производные первого порядка

Затем находим смешанные частные производные второго порядка

Мы видим, что смешанные частные производные и отличающиеся между собой лишь порядком дифференцирования, т. е. последовательностью, в которой производится дифференцирование по различным переменным, оказались тождественно равными. Этот результат не случаен. Относительно смешанных частных производных имеет место следующая теорема, которую мы принимаем без доказательства.

Понятие функции многих переменных

Пусть имеется n-перем-х и каждому х 1 , х 2 … х n из нек-го множ-ва х поставлено в соответствие опред. число Z, тогда на множ-ве х задана ф-ция Z=f(х 1 , х 2 … х n) многих переменных.

Х – обл-ть опред-я ф-ции

х 1 , х 2 … х n – независ-е переем-е (аргументы)

Z – ф-ция Пример: Z=П х 2 1 *х 2 (Объем цилиндра)

Рассм-м Z=f(х;у) – ф-цию 2-х перем-х (х 1 , х 2 замен-ся на х,у). Рез-ты по аналогии переносятся на др. ф-ции многих перем-х. Обл-ть опред-я ф-ции 2-х перем-х – вся корд пл-ть (оху) или ее часть. Мн-во знач-й ф-ции 2-х перем-х – поверх-ть в 3х-мерном простр-ве.

Приемы построения графиков: - Рассм-т сечение поверх-ти пл-тями || координатным пл-тям.

Пример: х = х 0 , зн. пл-ть Х || 0уz у = у 0 0хz Вид ф-ции: Z=f(х 0 ,y); Z=f(x,у 0)

Например: Z=x 2 +y 2 -2y

Z= x 2 +(y-1) 2 -1 x=0 Z=(y-1) 2 -1 y=1 Z= x 2 -1 Z=0 x 2 +(y-1) 2 -1

Парабола окруж-ть(центр(0;1)

Пределы и непрерывность ф-ций двух переменных

Пусть задана Z=f(х;у), тогда А – предел ф-ции в т.(х 0 ,y 0), если для любого сколь угодно малого положит. числа E>0 сущ-т полож-е число б>0, что для всех х,у удовл-щих |x-х 0 |<б; |y-y 0 |<б выполняется нерав-во |f(x,y)-A|

Z=f(х;у) непрерывна в т.(х 0 ,y 0), если: - она опред-на в этой т.; - имеет конеч. предел при х, стрем-ся к х 0 и у к у 0 ; - этот предел = знач-ю

ф-ции в т.(х 0 ,y 0), т.е. limf(х;у)=f(х 0 ,y 0)

Если ф-ция непрерывна в кажд. т. мн-ва Х, то она непрерывна в этой области

Дифференциал ф-ции, его геом смысл. Применение диф-ла в приближенных значениях.

dy=f’(x)∆x – диф-л ф-ции

dy=dx, т.е. dy=f ’(x)dx если у=х

С геом точки зрения диф-л ф-ции – это приращение ординаты касательной, проведенной к графику ф-ции в точке с абсциссой х 0

Диф-л применяют в вычислении приближ. значений ф-ции по формуле: f(х 0 +∆x)~f(х 0)+f’(х 0)∆x

Чем ближе ∆x к х, тем результат точнее

Частные производные первого и второго порядка

Производная первого порядка(которая называется частной)

О. Пусть х, у – приращения независимых переменных х и у в некоторой точке из области Х. Тогда величина, равная z = f(x+ х, y+ у) = f(x,y) называется полным приращением в точке х 0, у 0. Если переменную х зафиксировать, а переменной у дать приращение у, то получим zу = f(x,y,+ у) – f(x,y)



Аналогично определяется частная производная от переменной у, т.е.

Частную производную функции 2-х переменных находят по тем же правилам, что и для функций одной переменной.

Отличие состоит в том, что при дифференциации функции по переменной х, у считается const, а при дифференцировании по у, х считается const.

Изолированные const соединены с функцией операциями сложения/вычитания.

Связанные const соединены с функцией операциями умножения/деления.

Производная изолированной const = 0

1.4.Полный дифференциал функции 2-х переменных и его приложения

Пусть z = f(x,y), тогда

tz = - называется полным приращением

Частная производная 2-го порядка

Для непрерывных функций 2-х переменных смешанные частные производные 2-го порядка и совпадают.

Применение частных производных к определению частных производных max и min функций называются экстремумами.

О. Точки называются max или min z = f(x,y), если существуют некоторые отрезки такие, что для всех x и y из этой окрестности f(x,y)

Т. Если задана точка экстремума функции 2-х переменных, то значение частных производных в этой точке равны 0, т.е. ,

Точки , в которых частные производные первого порядка называются стационарными или критическими.

Поэтому для нахождения точек экстремума функции 2-х переменных используются достаточные условия экстремума.

Пусть функция z = f(x,y) дважды дифференцируема, и стационарная точка,

1) , причем maxA<0, minA>0.

1.4.(*)Полный дифференциал. Геометрический смысл дифференциала. Приложение дифференциала в приближенных вычислениях

О. Пусть функция y = f(x) определена в некоторой окрестности в точки . Функция f(x) называется дифференцируемой в точке , если ее приращение в этой точке , где представлено в виде (1)

Где А – постоянная величина, не зависящая от , при фиксированной точке х, - бесконечно малая при . Линейная относительно функция А называется дифференциалом функции f(x) в точке и обозначается df() или dy.

Таким образом, выражение (1) можно записать в виде ().

Дифференциал функции в выражении (1) имеет вид dy = A . Как и всякая линейная функция, он определен для любого значений в то время, как приращение функции необходимо рассматривать только для таких , для которых + принадлежит области определения функции f(x).

Для удобства записи дифференциала приращение обозначают dx и называют его дифференциалом независимой переменной x. Поэтому дифференциал записывают в виде dy = Adx.

Если функция f(x) дифференцируема в каждой точке некоторого интервала, то ее дифференциал является функцией двух переменных – точки x и переменной dx:

Т. Для того, чтобы функция y = g(x) была дифференцируема в некоторой точке , необходимо и достаточно, чтобы она имела в этой точке производную, при этом

(*)Доказательство. Необходимость.

Пусть функция f(x) дифференцируема в точке , т.е. . Тогда

Поэтому производная f’() существует и равна А. Отсюда dy = f’()dx

Достаточность.

Пусть существует производная f’(), т.е. = f’(). Тогда кривую y = f(x) отрезком касательной. Для вычисления значения функции в точке х берут в некоторой ее окрестности точку , такую, что не составляет труда найти f() и f’()/