Качественный анализ органических соединений. Химия Элементный качественный анализ

"Химия. 10 класс". О.С. Габриелян (гдз)

Качественный анализ органических соединений | Обнаружение углерода, водорода и галогенов

Опыт 1. Обнаружение углерода и водорода в органическом соединении.
Условия выполнения работы:
Собрали прибор как показано на рис. 44 учебника. Насыпали в пробирку щепотку сахара и немного оксида меди (II) СuO. Положили в пробирку, где-то на уровне две трети её небольшой ватный тампон, потом насыпали немного безводного медного купороса CuSO 4 . Закрыли пробирку пробкой с газоотводной трубкой, так, чтобы нижний её конец был опущен в другую пробирку с предварительно налитым туда гидроксидом кальция Са(ОН) 2 . Нагрели пробирку в пламени горелки. Наблюдаем выделение пузырьков газа из трубки, помутнение известковой воды и посинение белого порошка CuSO 4 .
С 12 Н 22 О 11 + 24CuO → 12CO 2 + 11H 2 O + 24Cu
Ca(OH) 2 + CO 2 → CaCO 3 ↓ + H 2 O
CuSO 4 + 5H 2 O → CuSO 4 . 5H 2 O
Вывод: В исходном веществе присутствует углерод и водород, так как получили углекислый газ и воду в результате окисления, а в окислителе CuO они не содержались.

Опыт 2. Обнаружение галогенов
Условия выполнения работы:
Взяли медную проволоку, загнутую на конце петлёй щипцами, прокалили её в пламени до образования чёрного налёта оксида меди (II) СuO. Затем остывшую проволоку окунули в раствор хлороформа и вновь внесли её в пламя горелки. Наблюдаем окрашивание пламени в голубовато-зелёный цвет, так как соли меди окрашивают пламя.
5CuO + 2CHCl 3 = 3CuCl 2 + 2CO 2 + H 2 O + 2Cu

Большинство лекарственных средств, используемых в медицинской практике, представляют собой органические вещества.

Чтобы подтвердить принадлежность препарата к той или иной химической группе, необходимо использовать реакции идентификации, которые должны обнаруживать присутствие в его молекуле определённой функциональной группы (например, спиртовый или фенольный гидроксил, первичную ароматическую или алифатическую группу и т.д.). Такой анализ называется анализом по функциональным группам.

Анализ по функциональным группам основывается на знаниях, приобретённых студентами при изучении органической и аналитической химии.

Информация

Функциональные группы – это группы атомов, которые отличаются высокой реакционной способностью и легко взаимодействуют с различными реактивами с заметным специфическим аналитическим эффектом (изменение цвета, появление запаха, выделение газа или осадка и т.д.).

Возможна идентификация препаратов и по структурным фрагментам.

Структурный фрагмент – это часть молекулы лекарственного вещества, которая взаимодействует с реактивом с заметным аналитическим эффектом (например, анионы органических кислот, кратные связи и т.д.).

Функциональные группы

Функциональные группы можно разделить на несколько типов:

2.2.1. Содержащие кислород:

а) гидроксильная группа (спиртовый и фенольный гидроксил):

б) альдегидная группа:

в) кето-группа:

г) карбоксильная группа:

д) сложноэфирная группа:

е) простая эфирная группировка:

2.2.2. Содержащие азот:

а) первичная ароматическая и алифатическая аминогруппы:

б) вторичная аминогруппа:

в) третичная аминогруппа:

г) амидная группа:

д) нитрогруппа:

2.2.3. Содержащие серу:

а) тиольная группа:

б) сульфамидная группа:

2.2.4. Содержащие галоген:

2.3. Структурные фрагменты:

а) двойная связь:

б) фенильный радикал:

2.4. Анионы органических кислот:

а) Ацетат-ион:

б) тартрат ион:

в) цитрат-ион:

г) бензоат-ион:

В данном методическом пособии приводятся теоретические основы качественного анализа структурных элементов и функциональных групп наиболее часто встречающихся в практике методик анализа лекарственных веществ.

2.5. ИДЕНТИФИКАЦИЯ СПИРТОВОГО ГИДРОКСИЛА

Лекарственные препараты, содержащие спиртовый гидроксил:

а) Спирт этиловый

б) Метилтестостерон

в) Ментол

2.5.1. Реакция образования сложных эфиров

Спирты в присутствии концентрированной серной кислоты образуют с органическими кислотами сложные эфиры. Низкомолекулярные эфиры имеют характерный запах, высокомолекулярные – определённую температуру плавления:

Спирт этилацетат

Этиловый (характерный запах)

Методика: к 2 мл спирта этилового 95% прибавляют 0,5 мл кислоты уксусной, 1 мл кислоты серной концентрированной и нагревают до кипения – ощущается характерный запах этилацетата.

2.5.2. Реакции окисления

Спирты окисляются до альдегидов при добавлении окислителей (дихромата калия, йода).

Суммарное уравнение реакции:

Иодоформ

(жёлтый осадок)

Методика: 0,5 мл спирта этилового 95% смешивают с 5 мл раствора натрия гидроксида, прибавляют 2 мл 0,1 М раствора иода – постепенно выпадает жёлтый осадок иодоформа, который имеет также характерный запах.

2.5.3. Реакции образования хелатных соединений (многоатомные спирты)

Многоатомные спирты (глицерин и др.) образуют с раствором сульфата меди а в щелочной среде хелатные соединения синего цвета:

глицерин голубой интенсивно-синяя

осадок окраска раствора

Методика: к 5мл раствора сульфата меди прибавляют 1-2 мл раствора гидроксида натрия до образования осадка гидроксида меди (II). Затем прибавляют раствор глицерина до растворения осадка. Раствор окрашивается в интенсивно-синий цвет.

2.6.ИДЕНТИФИКАЦИЯ ФЕНОЛЬНОГО ГИДРОКСИЛА

Лекарственные препараты, содержащие фенольный гидроксил:

а) Фенол б) Резорцин

в) Синестрол

г) Кислота салициловая д) Парацетамол

2.6.1. Реакция с железа (III) хлоридом

Фенолы в нейтральной среде в водных или спиртовых растворах образуют соли с железа (III) хлоридом, окрашенные в сине-фиолетовый (одноатомные), синий (резорцин), зелёный (пирокатехин) и красный (флороглюцин). Это объясняется образованием катионов С 6 Н 5 OFe 2+ , С 6 Н 4 O 2 Fe + и др.

Методика: к 1 мл водного или спиртового раствора исследуемого вещества (фенол 0,1:10, резорцин 0,1:10, натрия салицилат 0,01:10) прибавляют от 1 до 5 капель раствора железа (III) хлорида. Наблюдается характерное окрашивание.

2.6.2. Реакции окисления (индофеноловая проба)

а) Реакция с хлорамином

При взаимодействии фенолов с хлорамином и аммиаком образуется индофенол, окрашенный в различные цвета: сине-зелёный (фенол), буровато-жёлтый (резорцин) и др.

Методика: 0,05 г исследуемого вещества (фенол, резорцин) растворяют в 0,5 мл раствора хлорамина, прибавляют 0,5 мл раствора аммиака. Смесь нагревают на кипящей водяной бане. Наблюдается окрашивание.

б) Нитрозореакция Либермана

Окрашенный продукт (красный, зелёный, красно-коричневый) образуют фенолы, у которых в орто - и пара -положениях нет заместителей.

Методика: крупинку вещества (фенол, резорцин, тимол, кислота салициловая) помещают в фарфоровую чашку и смачивают 2-3 каплями 1 % раствора натрия нитрита в кислоте серной концентрированной. Наблюдается окрашивание, изменяющееся при добавлении натрия гидроксида.

в) Реакции замещения (с бромной водой и азотной кислотой)

Реакции основаны на способности фенолов бромироваться и нитроваться за счёт замещения подвижного атома водорода в орто - и пара -положениях. Бромпроизводные выпадают в виде осадка белого цвета, а нитропроизводные окрашены в жёлтый цвет.

резорцин белый осадок

жёлтое окрашивание

Методика: к 1мл раствора вещества (фенол, резорцин, тимол) прибавляют по каплям бромную воду. Образуется белый осадок. При добавлении 1-2 мл кислоты азотной разведённой постепенно появляется жёлтое окрашивание.

2.7. ИДЕНТИФИКАЦИЯ АЛЬДЕГИДНОЙ ГРУППЫ

Лекарственные вещества, содержащие альдегидную группу

а) формальдегид б) глюкоза

2.7.1. Окислительно-восстановительные реакции

Альдегиды легко окисляются до кислот и их солей (если реакции протекают в щелочной среде). Если в качестве окислителей используются комплексные соли тяжёлых металлов (Ag, Cu, Hg), то в результате реакции выпадает осадок металла (серебра, ртути) или оксида металла (оксид меди (I)).

а) реакция с аммиачным раствором нитрата серебра

Методика: к 2 мл раствора серебра нитрата прибавляют 10-12 капель раствора аммиака и 2-3 капли раствора вещества (формальдегида, глюкозы), нагревают на водяной бане с температурой 50-60 °С. Выделяется металлическое серебро в виде зеркала или серого осадка.

б) реакция с реактивом Фелинга

красный осадок

Методика: к 1 мл раствора альдегида (формальдегида, глюкозы), содержащего 0,01-0,02 г вещества, прибавляют 2 мл реактива Фелинга, нагревают до кипения, Выпадает кирпично-красный осадок оксида меди.

2.8. ИДЕНТИФИКАЦИЯ СЛОЖНОЭФИРНОЙ ГРУППЫ

Лекарственные вещества, содержащие сложноэфирную группу:

а) Кислота ацетилсалициловая б) Новокаин

в) Анестезин г) Кортизона ацетат

2.8.1. Реакции кислотного или щелочного гидролиза

Лекарственные вещества, содержащие в своей структуре сложноэфирную группу, подвергают кислотному или щелочному гидролизу с последующей идентификацией кислот (или солей) и спиртов:

кислота ацетилсалициловая

кислота уксусная

кислота салициловая

(белый осадок)

фиолетовое окрашивание

Методика: к 0,01 г кислоты салициловой приливают 5 мл раствора натрия гидроксида и нагревают до кипения. После охлаждения к раствору добавляют кислоту серную до выпадения осадка. Затем вносят 2-3 капли раствора хлорида железа, появляется фиолетовое окращивание.

2.8.2. Гидроксамовая проба.

Реакция основана на щелочном гидролизе сложного эфира. При гидролизе в щелочной среде в присутствии гидроксиламина гидрохлорида образуются гидроксамовые кислоты, которые с солями железа (III) дают гидроксаматы железа красного или красно-фиолетового цвета. Гидроксаматы меди (II) – осадки зелёного цвета.

гидроксиламин гидрохлорид

гидроксамовая кислота

гидроксамат железа (III)

анестезин гидроксиламин гидроксамовая кислота

гидроксамат железа (III)

Методика: 0,02 г вещества (кислота ацетилсалициловая, новокаин, анестезин и др.) растворяют в 3 мл спирта этилового 95 %, прибавляют 1 мл щелочного раствора гидроксиламина, встряхивают, нагревают на кипящей водяной бане в течение 5 мин. Затем добавляют 2 мл кислоты хлористоводородной разведённой, 0,5 мл 10 % раствора железа (III) хлорида. Появляется красное или красно-фиолетовое окрашивание.

2.9. ОБНАРУЖЕНИЕ ЛАКТОНОВ

Лекарственные вещества, содержащие лактонную группу:

а) Пилокарпина гидрохлорид

Лактонная группа – это внутренний сложный эфир. Лактонную группу можно определить с помощью гидроксамовой пробы.

2.10. ИДЕНТИФИКАЦИЯ КЕТО-ГРУППЫ

Лекарственные вещества, содержащие кето-группу:

а) Камфора б) Кортизона ацетат

Кетоны менее реакционоспособны по сравнению с альдегидами ввиду отсутствия подвижного атома водорода, поэтому окисление проходит в жёстких условиях. Кетоны легко вступают в реакции конденсации с гидрохлоридом гидроксиламина и гидразинами. Образуются оксимы или гидразоны (осадки или окрашенные соединения).

камфора оксим (белый осадок)

фенилгидразин сернокислый фенилгидразон

(жёлтое окрашивание)

Методика: 0,1 г лекарственного вещества (камфора, бромкамфора, тестостерон) растворяют в 3 мл спирта этилового 95 %, прибавляют 1 мл раствора фенилгидразина сернокислого или щелочного раствора гидроксиламина. Наблюдается появление осадка или окрашенного раствора.

2.11. ИДЕНТИФИКАЦИЯ КАРБОКСИЛЬНОЙ ГРУППЫ

Лекарственные вещества, содержащие карбоксильную группу:

а) Кислота бензойная б) Кислота салициловая

в) Кислота никотиновая

Карбоксильная группа легко вступает в реакции благодаря подвижному атому водорода. В основном это два типа реакций:

а) образование сложных эфиров со спиртами (см. раздел 5.1.5);

б) образование комплексных солей ионами тяжёлых металлов

(Fe, Ag, Cu, Co, Hg и др.). При этом образуются:

Серебряные соли белого цвета,

Соли ртути серого цвета,

Соли железа (III) розовато-жёлтого цвета,

Соли меди (II) голубого или синего цвета,

Соли кобальта сиреневого или розового цвета.

Ниже приводится реакция с ацетатом меди (II):

кислота никотиновая осадок синего цвета

Методика: к 5 мл тёплого раствора кислоты никотиновой (1:100) приливают 1 мл раствора ацетата или сульфата меди, выпадает осадок синего цвета.

2.12. ИДЕНТИФИКАЦИЯ ПРОСТОЙ ЭФИРНОЙ ГРУППЫ

Лекарственные вещества, содержащие простую эфирную группу:

а) Димедрол б) Диэтиловый эфир

Простые эфиры обладают способностью образовывать оксониевые соли с кислотой серной концентрированной, которые окрашены в оранжевый цвет.

Методика: На часовое стекло или фарфоровую чашку наносят 3-4 капли кислоты серной концентрированной и прибавляют 0,05 г лекарсвенного вещества (димедрол и др.). Появляется жёлто-оранжевое окрашивание, постепенно переходящее в кирпично-красное. При добавлении воды окраска исчезает.

На диэтиловый эфир реакцию с серной кислотой не выполнят ввиду образования взрывоопасных веществ.

2.13. ИДЕНТИФИКАЦИЯ ПЕРВИЧНОЙ АРОМАТИЧЕСКОЙ

АМИНОГРУППЫ

Лекарственные вещества, содержащие первичную ароматическую аминогруппу:

а)Анестезин

б) Новокаин

Ароматические амины являются слабыми основаниями, так как неподелённая электронная пара азота смещена в сторону бензольного ядра. В результате способность атома азота присоединять протон уменьшается.

2.13.1. Реакция образования азокрасителя

Реакция основана на способности первичной ароматической аминогруппы образовывать в кислой среде соли диазония. При добавлении соли диазония к щелочному раствору β-нафтола появляется красно-оранжевое, красное или малиновое окрашивание (азокраситель). Эту реакцию дают местные анестетики, сульфамиды и др.

соль диазония

азокраситель

Методика: 0,05 г вещества (анестезин, новокаин, стрептоцид и др.) растворяют в 1 мл кислоты хлористоводородной разведённой, охлаждают во льду, прибавляют 2 мл 1 % раствора нитрита натрия. Полученный раствор прибавляют к 1 мл щелочного раствора β-нафтола, содержащего 0,5 г ацетата натрия.

Появляется красно-оранжевое, красное или малиновое окрашивание или оранжевый осадок.

2.13.2. Реакции окисления

Первичные ароматические амины легко окисляются даже кислородом воздуха, образуя окрашенные продукты окисления. В качестве окислителей используются также хлорная известь, хлорамин, перекись водорода, железа (III) хлорид, калия дихромат и т.д.

Методика: 0,05- 0,1 г вещества (анестезин, новокаин, стрептоцид и др.) растворяют в 1 мл натрия гидроксида. К полученному раствору добавляют 6-8 капель хлорамина и 6 капель 1 % раствора фенола. По мере нагревания на кипящей водяной бане повляется окрашивание (синее, сине-зелёное, жёлто-зелёное, жёлтое, жёлто-оранжевое).

2.13.3. Лигниновая проба

Это разновидность реакции конденсации первичной ароматической аминогруппы с альдегидами в кислой среде. Она выполняется на древесине или газетной бумаге.

Ароматические альдегиды, содержащиеая в лигнине (п -окси-безальдегид, сиреневый альдегид, ванилин – в зависимости от вида лигнина) взаимодействуют с первичными ароматическими аминами. Образуя основания Шиффа.

Методика: на лигнин (газетную бумагу) помещают несколько кристаллов вещества, 1-2 капли кислоты хлористоводородной, разведённой. Появляется оранжево-жёлтое окрашивание.

2.14. ИДЕНТИФИКАЦИЯ ПЕРВИЧНОЙ АЛИФАТИЧЕСКОЙ

АМИНОГРУППЫ

Лекарственные вещества, содержащие первичную алифатическую аминогруппу:

а) Кислота глутаминовая б) Кислота γ-аминомасляная

2.14.1. Нингидриновая проба

Первичные алифатические амины окисляются нингидрином при нагревании. Нингидрин –стабильный гидрат 1,2,3-триоксигидриндана:

Обе равновесные формы вступают в реакцию:

основание Шиффа 2-амино-1,3-диоксоиндан

сине-фиолетовое окрашивание

Методика: 0,02 г вещества (кислота глутаминовая, кислота аминокапроновая и другие аминокислоты и первичные алифатические амины) растворяют при нагревании в 1 мл воды, прибавляют 5-6 капель раствора нингидрина и нагревают, появляется фиолетовое окрашивание.

2.15. ИДЕНТИФИКАЦИЯ ВТОРИЧНОЙ АМИНОГРУППЫ

Лекарственные вещества, содержащие вторичную аминогруппу:

а) Дикаин б) Пиперазин

Лекарственные вещества, содержащие вторичную аминогруппу, образуют осадки белого, зеленовато-бурого цветов в результате реакции с нитритом натрия в кислой среде:

нитрозоамин

Методика: 0,02 г лекарственного вещества (дикаин, пиперазин) растворяют в 1 мл воды, прибавляют 1 мл раствора нитрита натрия, смешанного с 3-каплями хлористоводородной кислоты. Выпадает осадок.

2.16. ИДЕНТИФИКАЦИЯ ТРЕТИЧНОЙ АМИНОГРУППЫ

Лекарственные вещества, содержащие третичную аминогруппу:

а) Новокаин

б) Димедрол

Лекарственные вещества, имеющие в своей структуре третичную аминогруппу, обладают основными свойствами, а также проявляют сильные восстановительные свойства. Поэтому они легко окисляются с образованием окрашенных продуктов. Для этого используют следующие реактивы:

а) кислота азотная концентрированная;

б) кислота серная концентрированная;

в) реактив Эрдмана (смесь концентрированных кислот – серной и азотной);

г) реактив Манделина (раствор (NH 4) 2 VO 3 в кислоте серной конц.);

д) реактив Фреде (раствор (NH 4) 2 МоO 3 в кислоте серной конц.);

е) реактив Марки (раствор формальдегида в кислоте серной конц.).

Методика: На чашку Петри помещают 0,005 г вещества (папаверина гидрохлорид, резерпин и др.) в виде порошка и прибавляют 1-2-капли реактива. Наблюдают появление соответствующего окрашивания.

2.17. ИДЕНТИФИКАЦИЯ АМИДНОЙ ГРУППЫ.

Лекарственные вещества, содержащие амидную и замещённую амидную группу:

а) Никотинамид б) Диэтиламид никотиновой

2.17.1. Щелочной гидролиз

Лекарственные вещества, содержащие амидную (никотинамид) и замещённую амидную группу (фтивизид, фталазол, пуриновые алкалоиды, диэтиламид никотиновой кислоты), при нагревании в щелочной среде гидролизуются с образованием аммиака или аминов и солей кислот:

Методика: 0,1 г вещества взбалтывают в воде, прибавляют 0,5 мл 1 М раствора натрия гидроксида и нагревают. Ощущается запах выделившегося аммиака или амина.

2.18. ИДЕНТИФИКАЦИЯ АРОМАТИЧЕСКОЙ НИТРОГРУППЫ

Лекарственные вещества, содержащие ароматическую нитрогруппу:

а) Левомицетин б) Метронилазол

2.18.1. Реакции восстановления

Препараты, содержащие ароматическую нитрогруппу (левомицетин и др.) идентифицируются с помощью реакции восстановления нитрогруппы до аминогруппы, затем проводят реакцию образования азокрасителя:

Методика: к 0,01 г левомицетина прибавляют 2 мл раствора кислоты хлористоводородной разведённой и 0,1 г цинковой пыли, нагревают на кипящей водяной бане в течение 2-3 минут, после охлаждения фильтруют. К фильтрату добавляют 1 мл 0,1 М раствора натрия нитрата, хорошо перемешивают и вливают содержимое пробирки в 1 мл свежеприготовленного раствора β-нафтола. Появляется красное окрашивание.

2.19. ИДЕНТИФИКАЦИЯ СУЛЬФГИДРИЛЬНОЙ ГРУППЫ

Лекарственные вещества, содержащие сульфгидрильную группу:

а) Цистеин б) Мерказолил

Органические лекарственные вещества, содержащие сульфгидрильную (-SH) группу, (цистеин, мерказолил, меркаптопурил и др.) образуют осадки с солями тяжёлых металлов(Ag, Hg, Co, Cu) – меркаптиды (серого, белого, зелёного и др. цветов). Это происходит ввиду наличия подвижного атома водорода:

Методика: 0,01 г лекарственного вещества растворяют в 1 мл воды, прибавляют 2 капли раствора нитрата серебра, образуется белый осадок, нерастворимый в воде и азотной кислоте.

2.20. ИДЕНТИФИКАЦИЯ СУЛЬФАМИДНОЙ ГРУППЫ

Лекарственные вещества, содержащие сульфамидную группу:

а) Сульфацил-натрий б) Сульфадиметоксин

в) Фталазол

2.20.1. Реакция образования солей с тяжёлыми металлами

Большая группа лекарственных веществ, имеющих в молекуле сульфамидную группу, проявляет кислотные свойства. В слабощелочной среде эти вещества образуют различного цвета осадки с солями железа (III), меди (II) и кобальта:

норсульфазол

Методика: 0,1 г сульфацил-натрия растворяют в 3 мл воды, добавляют 1 мл раствора сульфата меди, образуется осадок голубовато-зелёного цвета, который не меняется при стоянии (отличие от других сульфаниламидов).

Методика: 0,1 г сульфадимезина взбалтывают с 3 мл 0,1 М раствора гидроксида натрия в течение 1-2 минут и фильтруют, к фильтрату прибавляют 1 мл раствора сульфата меди. Образуется осадок желтовато-зелёного цвета, быстро переходящий в коричневый (отличие от других сульфаниламидов).

Аналогично проводят реакции идентификации других сульфаниламидов. Цвет образующего осадка у норсульфазола грязно-фиолетовый, у этазола – травянисто-зелёный, переходящий в чёрный.

2.20.2. Реакция минерализации

Вещества, имеющие сульфамидную группу, минерализуются кипячением в кислоте азотной концентрированной до кислоты серной, которую обнаруживают по выпадению белого осадка после добавления раствора хлорида бария:

Методика: 0,1 г вещества (сульфаниламида) осторожно (под тягой) кипятят 5-10 минут в 5 мл кислоты азотной концентрированной. Затем раствор охлаждают, осторожно вливают в 5 мл воды, перемешивают и добавляют раствор хлорида бария. Выпадает белый осадок.

2.21. ИДЕНТИФИКАЦИЯ АНИОНОВ ОРГАНИЧЕСКИХ КИСЛОТ

Лекарственные вещества, содержащие ацетат-ион:

а)Калия-ацетат б) Ретинола ацетат

в) Токоферола ацетат

г) Кортизона ацетат

Лекарственные вещества, представляющие собой сложные эфиры спиртов и уксусной кислоты (ретинола ацетат, токоферола ацетат, кортизона ацетат и др.) при нагревании в щелочной или кислой среде гидролизуются с образованием спирта и уксусной кислоты или ацетата натрия:

2.21.1. Реакция образования уксусноэтилового эфира

Ацетаты и уксусная кислота взаимодействуют с 95 % спиртом этиловым в присутствии кислоты серной концентрированной с образованием этилацетата:

Методика: 2 мл раствора ацетата нагревают с равным количеством кислоты серной концентрированной и 0,5 мл 95 5 спирта этилового, ощущается запах этилацетата.

2.21.2.

Ацетаты в нейтральной среде взаимодействуют с раствором железа (III) хлорида с образованием комплексной соли красного цвета.

Методика: к 2 мл нейтрального раствора ацетата прибавляют 0,2 мл раствора железа (III) хлорида, появляется красно-бурое окрашивание, исчезающее при добавлении разведённых минеральных кислот.

Лекарственные вещества, содержащие бензоат-ион:

а)Кислота бензойная б) Натрия бензоат

2.21.3. Реакция образования комплексной соли железа (III)

Лекарственные вещества, содержащие бензоат-ион, бензойную кислоту образуют комплексную соль с раствором хлорида железа (III):

Методика: к 2 мл нейтрального раствора бензоата прибавляют 0,2 мл раствора железа (III) хлорида, образуется розовато-жёлтый осадок, растворимый в эфире.


Особенности анализа органических соединений:

  • - Реакции с органическими веществами протекают медленно с образованием промежуточных продуктов.
  • - Органические вещества термолабильны, при нагревании обугливаются.

В основе фармацевтического анализа органических лекарственных веществ лежат принципы функционального и элементного анализа.

Функциональный анализ - анализ по функциональным группам, т.е. атомам, группам атомов или реакционным центрам, которые определяют физические, химические или фармакологические свойства препаратов.

Элементный анализ используют для испытания подлинности органических лекарственных веществ, содержащих в молекуле атомы серы, азота, фосфора, галогенов, мышьяка, металлов. Атомы этих элементов находятся в элементоорганических лекарственных соединениях в неионизированном состоянии, необходимым условием испытания их подлинности является предварительная минерализация.

Это могут быть жидкие, твердые и газообразные вещества. Газообразные и жидкие соединения в основном обладают наркотическим действием. Эффект снижается от F - Cl - Br - I. Йодопроизводные в основном обладают антисептическим действием. Связь C-F; C-I; C-Br; C-Cl является ковалентной, поэтому для фармацевтического анализа ионные реакции используют после минерализации вещества.

Подлинность препаратов жидких галогенпроизводных углеводородов устанавливают по физическим константам (температура кипения, плотность, растворимость) и по наличию галогена. Наиболее объективным является способ установления подлинности по идентичности ИК-спектров препарата и стандартных образцов.

Для доказательства наличия галогенов в молекуле используют пробу Бейльштейна и различные методы минерализации.

Таблица 1. Свойства галогенсодержащих соединений

Хлорэтил Aethylii cloridum (МНН Ethylchloride)

Фторотан

  • 1,1,1-трифтор-2хлор-2-бромэтан
  • (МНН Halothane)

Бромкамфора

3-бром-1,7,7,триметилбицикло-гептанон-2

Жидкость прозрачная, бесцветная, легко летучая, со своеобразным запахом, трудно растворима в воде, со спиртом и эфиром смешивается в любых соотношениях.

Жидкость без цвета, прозрачная, тяжелая, летучая, с характерным запахом, мало растворима в воде, смешивается со спиртом, эфиром, хлороформом.

Белый кристаллический порошок или бесцветные кристаллы, запаха и вкуса, очень плохо растворим в воде, легко в спирте и хлороформе.

Bilignostum pro injectionibus

Билигност

Бис-(2,4,6-трийод-3-карбоксианилид) адипиновой кислоты

Бромизовал

2-бромизовалерианил-мочевина

Белый кристаллический порошок, слабо горького вкуса, практически не растворим в воде, спирте, хлороформе.

Белый кристаллический порошок или бесцветные кристаллы со слабым специфическим запахом, мало растворим в воде, растворим в спирте.

Проба Бейльштейна

Наличие галогена доказывается путем прокаливания вещества в твердом состоянии на медной проволоке. В присутствии галогенов, образуются галогениды меди, окрашивающие пламя в зеленый или сине-зеленый цвет.

Галогены в органической молекуле связаны ковалентной связью, степень прочности которой зависит от химического строения галогенпроизводного, поэтому для отщепления галогена перевода его в ионизированное состояние необходимы различные условия. Образовавшиеся галогенид-ионы обнаруживают обычными аналитическими реакциями.

Хлорэтил

· Метод минерализации - кипячение со спиртовым раствором щелочи (учитывая низкую температуру кипения, определение ведут с обратным холодильником).

CH 3 CH 2 Cl+KOH c KCl +C 2 H 5 OH

Образовавшийся хлорид-ион обнаруживают раствором серебра нитрата по образованию белого творожистого осадка.

Сl- + AgNO 3 > AgCl + NO 3 -

Фторотан

· Метод минерализации - сплавление с металлическим натрием

F 3 C-CHClBr + 5Na + 4H 2 O> 3NaF + NaCl + 2NaBr + 2CO 2

Образовавшиеся хлорид- и бромид -ионы обнаруживают раствором серебра нитрата по образованию белого творожистого и желтоватого осадков.

Фторид-ион доказывают реакциями:

  • - реакция с раствором ализаринового красного и раствором нитрата циркония, в присутствии F- красное окрашивание переходит в светло-желтое;
  • - взаимодействие с растворимыми солями кальция (выпадает белый осадок фторида кальция);
  • - реакция обесцвечивания роданида железа (красный).
  • · При добавлении к фторотану конц. H 2 SO 4 , препарат находится в нижнем слое.

Бромизовал

· Метод минерализации - кипячение со щелочью (щелочной гидролиз в водном растворе), появляется запах аммиака:


· Нагревание с конц. серной кислотой - запах изовалериановой кислоты


Бромкамфора

· Метод минерализации методом восстановительная минерализация (с металлическим цинком в щелочной среде)


Бромид-ион определяют реакцией с хлорамином Б.

Билигност

  • · Метод минерализации - нагревание с концентрированной серной кислотой: отмечается появление фиолетовых паров молекулярного йода.
  • · ИК-спектроскопия - 0,001% раствор препарата в 0,1 н растворе натрия гидроксида в области от 220 до 300 нм имеет максимум поглощения при л=236 нм.

Йодоформ

  • · Методы минерализации:
    • 1) пиролиз в сухой пробирке, выделяются фиолетовые пары йода
    • 4CHI 3 + 5O 2 > 6I 2 + 4CO 2 + 2H 2 O
    • 2) нагревание с конц. серной кислотой
    • 2CHI 3 + H 2 SO 4 > 3I 2 + 2CO 2 + 2H 2 O + SO 3

Доброкачественность (чистота галогенсодержащих углеводородов).

Проверку доброкачественности хлорэтила и фторотана проводят, устанавливая кислотность или щелочность, отсутствие или допустимое содержание стабилизаторов (тимола во фторотане - 0,01%), посторонних органических примесей, примесей свободного хлора (брома во фторотане), хлоридов, бромидов, нелетучего остатка.

  • 1) Хлорэтил: 1. Определяют t кипения и плотность,
  • 2. Недопустимую примесь спирта этилового (реакция образования йодоформа)
  • 2) Билигност: 1. Нагревание с кH 2 SO 4 и образование фиолетовых паров I 2
  • 2. ИК-спектроскопия
  • 3) Фторотан: 1. ИК-спектроскопия
  • 2. t кипения; плотность; показатель преломления
  • 3. не должно быть примесей Cl- и Br-

Количественное определение хлорэтила ГФ не предусматривает, но оно может быть выполнено методом аргентометрии или меркуриметрии.

Метод количественного определения - обратное аргентометрическое титрование по Фольгарду после минерализации (реакцию см. в определении подлинности).

1. Реакция перед титрованием:

фармацевтический лекарственный хлорэтил титрование

NaBr + AgNO 3 > AgBrv+ NaNO 3

2. Реакция титрования:

AgNO 3 + NH 4 SCN > AgSCN v + NH 4 NO 3

  • 3. В точке эквивалентности:
  • 3NH 4 SCN + Fe(NH 4)(SO 4) 2 >

Метод количественного определения - аргентометрическое титрование по Кольтгоффа после минерализации (реакции см. в определении подлинности).

  • 1. Реакция перед титрованием:
  • 3NH 4 SCN + Fe(NH 4)(SO 4) 2 > Fe (SCN) 3 + 2 (NH 4) 2 SO 4

точное количество буровато-красный

2. Реакция титрования:

NaBr + AgNO 3 > AgBrv+ NaNO 3

3. В точке эквивалентности:

AgNO 3 + NH 4 SCN > AgSCNv + NH 4 NO 3

обесцвечивание

Билигност

Метод количественного определения - косвенная йодометрия после окислительного расщепления билигноста до йодата при нагревании с раствором перманганата калия в кислой среде, избыток перманганата калия удаляют с помощью нитрата натрия, а для удаления избытка азотистой кислоты к смеси прибавляют раствор мочевины.

Титрант - 0,1 моль/л раствор натрия титсульфата, индикатор - крахмал, в точке эквивалентности наблюдают исчезновение синей окраски крахмала.

Схема реакции:

t; KMnO 4 +H 2 SO 4

RI 6 > 12 IO 3 -

Реакция выделения заместителя:

КIO 3 + 5KI + 3H 2 SO 4 >3I 2 + 3K 2 SO 4 + 3H 2 O

Реакция титрования:

I 2 +2Na 2 S 2 O 3 > 2NaI+Na 2 S 4 O 6

Йодоформ

Метод количественного определения - обратное аргентометрическое титрование по Фольгарду после минерализации.

Минерализация:

CHI 3 + 3AgNO 3 + H 2 O> 3AgI + 3HNO 3 + CO 2

Реакция титрования:

AgNO 3 + NH 4 SCN > AgSCN v + NH 4 NO 3

В точке эквивалентности:

3NH 4 SCN + Fe(NH 4)(SO 4) 2 > Fe (SCN) 3 v + 2 (NH 4) 2 SO 4

Хранение

Хлорэтил в ампулах в прохладном, защищенном от света месте, фторотан и билигност в склянках оранжевого стекла в сухом прохладном, защищенном от света месте. Бромкамфору хранят в склянках оранжевого стекла в сухом прохладном месте.

Хлорэтил используют для местной анестезии, фторотан для наркоза. Бромкамфору применяют в качестве седативного средства (иногда для остановки лактации). Бромизовал является снотворным средством, билигност применяют в качестве рентгеноконтрастного вещества в виде смеси солей в растворе.

Литература

  • 1. Государственная фармакопея СССР / Министерство здравоохранения СССР. - Х изд. - М.: Медицина, 1968. - С. 78, 134, 141, 143, 186, 373,537
  • 2. Государственная фармакопея СССР Вып. 1. Общие методы анализа. Лекарственное растительное сырье / Министерство здравоохранения СССР. - 11-е изд., доп. - М.: Медицина, 1989. - С. 165-180, 194-199
  • 3. Лекционный материал.
  • 4. Фармацевтическая химия. В 2 ч.: учебное пособие / В. Г. Беликов - 4-е изд., перераб. и доп. - М.: МЕДпресс-информ, 2007. - С. 178-179, 329-332
  • 5. Руководство к лабораторным занятиям по фармацевтической химии. Под редакцией А.П. Арзамасцева, стр.152-156.

Приложение 1

Фармакопейные статьи

Билигност

Бис-(2,4,6-трийод-З-карбоксианилид) адипиновой кислоты


C 20 H 14 I 6 N 2 O 6 M. в. 1139,8

Описание. Белый или почти белый мелкокристаллический порошок слабо горького вкуса.

Растворимость. Практически нерастворим в воде, 95% спирте, эфире и хлороформе, легко растворим в растворах едких щелочей и аммиака.

Подлинность. 0,001% раствор препарата в 0,1 н. растворе едкого натра в области от 220 до 300 нм имеет максимум поглощения при длине волны около 236 нм.

При нагревании 0,1 г препарата с 1 мл концентрированной серной кислоты выделяются фиолетовые пары йода.

Цветность раствора. 2 г препарата растворяют в 4 мл 1 н. раствора едкого натра, фильтруют и промывают фильтр водой до получения 10 мл фильтрата. Окраска полученного раствора не должна быть интенсивнее эталона № 4б или № 4в.

Проба с перекисью водорода. К 1 мл полученного раствора прибавляют 1 мл перекиси водорода; в течение 10--15 минут не должна появляться муть.

Соединения с открытой аминогруппой. 1 г препарата взбалтывают с 10 мл ледяной уксусной кислоты и фильтруют. К 5 мл прозрачного фильтрата прибавляют 3 капли 0,1 мол раствора нитрита натрия. Через 5 минут появившаяся окраска не должна быть интенсивнее эталона №2ж.

Кислотность. 0,2 г препарата встряхивают в течение 1 минуты с кипящей водой (4 раза по 2 мл) и фильтруют до получения прозрачного фильтрата. Объединенные фильтраты титрую! 0,05 н. раствором едкого натра (индикатор--фенолфталеин). На титрование должно расходоваться не более 0,1 мл 0,05 н. раствора едкого натра.

Хлориды. 2 г препарата взбалтывают с 20 мл воды и фильтруют до получения прозрачного фильтрата. 5 мл фильтрата, доведенные водой до 10 мл, должны выдерживать испытание на хлориды (не более 0,004% в препарате).

Фосфор. 1 г препарата помещают в тигель и озоляют до получения белого остатка. К остатку прибавляют 5 мл разведенной азотной кислоты и упаривают досуха, после чего остаток в тигле хорошо перемешивают с 2 мл горячей воды и фильтруют в пробирку через маленький фильтр. Тигель и фильтр промывают 1 мл горячей воды, собирая фильтрат в ту же пробирку, затем прибавляют 3 мл раствора молибдата аммония и оставляют на 15 минут в бане при температуре 38--40° Испытуемый раствор может иметь желтоватую окраску, но должен оставаться прозрачным (не более 0,0001% в препарате).

Иодмонохлорид. 0,2 г препарата взбалтывают с 20 мл воды и фильтруют до получения прозрачного фильтрата. К 10-мл фильтрата добавляют 0,5 г йодида калия, 2 мл соляной кислоты и 1 мл хлороформа. Хлороформный слой должен оставаться бесцветным.

Железо. 0,5 г препарата должны выдерживать испытание на железо (не более 0,02% в препарате). Сравнение проводят с эталоном, приготовленным из 3,5 мл эталонного раствора Б и 6,5 мл воды.

Сульфатная зола из 1 г препарата не должна превышать 0,1%.

Тяжелые металлы. Сульфатная зола из 0,5 г препарата должна выдерживать испытание на тяжелые металлы (не более 0,001% в препарате).

Мышьяк. 0,5 г препарата должны выдерживать испытание на мышьяк (не более 0,0001 % в препарате).

Количественное определение. Около 0,3 г препарата (точная навеска) помещают в мерную колбу емкостью 100 мл, растворяют в 5 мл раствора едкого натра, доливают водой до метки и перемешивают. 10 мл полученного раствора помещают в колбу емкостью 250 мл, прибавляют 5 мл 5% раствора перманганата калия и осторожно по стенкам колбы, при перемешивании, прибавляют 10 мл концентрированной серной кислоты по 0,5--1 мл и оставляют на 10 минут. Затем прибавляют медленно, по 1 капле через 2--3 секунды, при энергичном перемешивании. раствор нитрита натрия до обесцвечивания жидкости и растворения двуокиси марганца. После этого сразу прибавляют 10 мл 10% раствора мочевины и перемешивают до полного исчезновения пузырьков, смывая при этом со стенок колбы нитрит натрия. Затем к раствору прибавляют 100 мл воды, 10 мл свежеприготовленного раствора йодида калия и выделившийся йод титруют 0,1 н. раствором тиосульфата натрия (индикатор -- крахмал).

1 мл 0,1 н. раствора тиосульфата натрия соответствует 0,003166 г C 20 H 14 l 6 N 2 0 6 , которого в препарате должно быть не менее 99.0%.

Хранение. Список Б. В банках оранжевого стекла, в защищенном от света месте.

Рентгеноконтрастное средство.

Йодоформ

Трийодметан

СНI 3 М.в. 393,73

Описание. Мелкие пластинчатые блестящие кристаллы или мелкокристаллический порошок лимонно-желтого цвета, резкого характерного устойчивого запаха. Летуч уже при обыкновенной температуре, перегоняется с водяным паром. Растворы препарата быстро разлагаются от действия света и воздуха с выделением йода.

Растворимость. Практически нерастворим в воде, трудно растворим в спирте, растворим в эфире и хлороформе, мало растворим в глицерине. жирных и эфирных маслах.

Подлинность, 0,1 г препарата нагревают в пробирке на пламени горелки; выделяются фиолетовые пары йода.

Температура плавления 116--120° (с разложением).

Красящие вещества. 5 г препарата энергично взбалтывают в течение 1 минуты с 50 мл воды и фильтруют. Фильтрат должен быть бесцветным.

Кислотность или щелочность. К 10 мл фильтрата прибавляют 2 капли раствора бромтимолового синего. Появившееся желто-зеленое окрашивание должно перейти в синее от прибавления не более 0,1 мл 0,1 н. раствора едкого натра или в желтое от прибавления не более 0,05 мл 0,1 н. раствора соляной кислоты.

Галогены. 5 мл того же фильтрата, разведенные водой до 10 мл, должны выдерживать испытание на хлориды (не более 0,004% в препарате).

Сульфаты. 10 мл того же фильтрата должны выдерживать испытание на сульфаты (не более 0,01% в препарате).

Зола из 0,5 г препарата не должна превышать 0,1%.

Количественное определение. Около 0,2 г препарата (точная навеска) помещают в коническую колбу емкостью 250--300 мл, растворяют в 25 ли 95% спирта, прибавляют 25 мл 0,1 н. раствора нитрата серебра, 10 мл азотной кислоты и нагревают с обратным холодильником на водяной бане в течение 30 минут, защищая реакционную колбу от света. Холодильник промывают водой, в колбу прибавляют 100 мл воды и избыток нитрата серебра оттитровывают 0,1 н. раствором роданида аммония (индикатор -- железоаммониевые квасцы).

Параллельно проводят контрольный опыт.

1 мл 0,1 н. раствора нитрата серебра соответствует 0,01312 г СНI 3 , которого в препарате должно быть не менее 99,0%.

Хранение. В хорошо укупоренной таре, предохраняющей от действия света, в прохладном месте.

>> Химия: Практическая работа № 1. Качественный анализ органических соединений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Утверждено на заседании

кафедры химии

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к лабораторной работе

«КАЧЕСТВЕННЫЙ АНАЛИЗ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ»

Ростов-на-Дону, 2004

УДК 543.257(07)

Методические указания к лабораторной работе «Качественный анализ органических соединений». – Ростов н/Д: Рост. гос. строит. ун-т, 2004. – 8 с.

В указаниях даются сведения об особенностях анализа органических соединений, способах обнаружения углерода, водорода, азота, серы и галогенов.

Методические указания предназначены для работы со студентами специальности 1207 дневной и заочной форм обучения.

Составитель: Е.С. Ягубьян

Редактор Н.Е. Гладких

Темплан 2004 г., поз.175

Подписано в печать 20.05.04. Формат 60х84/16

Бумага писчая. Ризограф. Уч.- изд. л. 0,5. Тираж 50 экз. Заказ 163.

__________________________________________________________________

Редакционно – издательский центр

Ростовского государственного строительного университета.

344022, Ростов – на – Дону, ул. Социалистическая, 162

 Ростовский государственный

строительный университет, 2004

Техника безопасности при работе в лаборатории органической химии

1. Перед началом работы необходимо ознакомиться со свойствами применяемых и получаемых веществ, уяснить все операции опыта.

2. Приступать к работе можно только с разрешения преподавателя.

3. Во время нагревания жидкостей или твердых веществ не направляйте отверстие посуды на себя или на соседей; не заглядывайте в посуды сверху, так как в случае возможного выброса нагретого вещества может произойти несчастный случай.

4. С концентрированными и дымящимися кислотами работайте в вытяжном шкафу.

5. Аккуратно вносите в пробирку концентрированные кислоты и щелочи, остерегайтесь пролить их на руки, одежду, стол. Если кислота или щелочь попала на кожу или одежду, быстро большим количеством воды смойте их и обратитесь за помощью к преподавателю.

6. Если на кожу попадает разъедающее органическое вещество, то промывание водой в большинстве случаев бесполезно. Следует промывать подходящим растворителем (спиртом, ацетоном). Применять растворитель нужно по возможности быстро и в большом количестве.

7. Излишек взятого реактива не всыпать и не вливать обратно в склянку, из которой он был взят.

Качественный анализ позволяет установить, какие элементы входят в состав исследуемого вещества. В состав органических соединений всегда входят углерод и водород. Многие органические соединения содержат в своем составе кислород и азот, несколько реже встречаются галоиды, сера, фосфор. Перечисленные элементы образуют группу элементов – органогенов, чаще всего встречающихся в молекулах органических веществ. Однако в органических соединениях может содержаться практически любой элемент периодической системы. Так, например, в лецитинах и фосфатидах (составных частях клеточного ядра и нервной ткани) – фосфор; в гемоглобине – железо; в хлорофилле – магний; в синей крови некоторых моллюсков – комплексно связанная медь.

Качественный элементный анализ состоит в качественном определении элементов, входящих в состав органического соединения. Для этого сначала разрушают органическое соединение, затем превращают определяемые элементы в простые неорганические соединения, которые могут быть изучены известными аналитическими методами.

Элементы, входящие в состав органических соединений, при качественном анализе, как правило, претерпевают следующие превращения:

С СО 2 ; Н Н 2 О; N – NН 3 ; СI – СI - ; S SО 4 2- ; Р РО 4 2- .

Первой пробой исследования неизвестного вещества для проверки на принадлежность его к классу органических веществ является прокаливание. Очень многие органические вещества при этом чернеют, обугливаются, выявляя таким образом углерод, входящий в их состав. Иногда обугливание наблюдается при действии водоотнимающих веществ (например, концентрированной серной кислоты и т.д.). Особенно резко такое обугливание проявляется при нагревании. Коптящее пламя свечи, горелки – примеры обугливания органических соединений, доказывающие наличие углерода.

При всей своей простоте проба на обугливание является только вспомогательным, ориентировочным приемом и имеет ограниченное применение: ряд веществ нельзя обугливать обычным путем. Некоторые вещества, например, спирт и эфир, уже при слабом нагревании испаряются раньше, чем успеют обуглиться; другие, например мочевина, нафталин, фталевый ангидрид, возгоняются раньше обугливания.

Универсальным способом открытия углерода в любом органическом соединении не только в твердом, но также в жидком и газообразном агрегатном состояниях, является сжигание вещества с оксидом меди (П). При этом углерод окисляется с образованием углекислого газа СО 2 , который обнаруживается по помутнению известковой или баритовой воды.