Ньютона закон тяготения. Классическая теория тяготения ньютона По какой формуле определяется сила всемирного тяготения

Эта статья уделит внимание истории открытия закона всемирного тяготения. Здесь мы ознакомимся с биографическими сведениями из жизни ученого, открывшего эту физическую догму, рассмотрим ее основные положения, взаимосвязь с квантовой гравитацией, ход развития и многое другое.

Гений

Сэр Исаак Ньютон - ученый родом из Англии. В свое время много внимания и сил уделил таким науками, как физика и математика, а также привнес немало нового в механику и астрономию. По праву считается одним из первых основоположников физики в ее классической модели. Является автором фундаментального труда «Математические начала натуральной философии», где изложил информацию о трех законах механики и законе всемирного тяготения. Исаак Ньютон заложил этими работами основы классической механики. Им было разработано и интегрального типа, световая теория. Он также внес большой вклад в физическую оптику и разработал множество других теорий в области физики и математики.

Закон

Закон всемирного тяготения и история его открытия уходят своим началом в далекий Его классическая форма - это закон, при помощи которого описывается взаимодействие гравитационного типа, не выходящее за пределы рамок механики.

Его суть заключалась в том, что показатель силы F гравитационной тяги, возникающей между 2 телами или точками материи m1 и m2, отделенными друг от друга определенным расстоянием r, соблюдает пропорциональность по отношению к обоим показателям массы и имеет обратную пропорциональность квадрату расстояния между телами:

F = G, где символом G мы обозначаем постоянную гравитации, равную 6,67408(31).10 -11 м 3 /кгс 2 .

Тяготение Ньютона

Прежде чем рассмотреть историю открытия закона всемирного тяготения, ознакомимся более детально с его общей характеристикой.

В теории, созданной Ньютоном, все тела с большой массой должны порождать вокруг себя особое поле, которое притягивает другие объекты к себе. Его называют гравитационным полем, и оно имеет потенциал.

Тело, обладающее сферической симметрией, образует за пределом самого себя поле, аналогичное тому, которое создает материальная точка той же массы, расположенная в центре тела.

Направление траектории такой точки в поле гравитации, созданным телом с гораздо более большой массой, подчиняется Объекты вселенной, такие как, например, планета или комета, также подчиняются ему, двигаясь по эллипсу или гиперболе. Учет искажения, которое создают другие массивные тела, учитывается с помощью положений теории возмущения.

Анализируя точность

После того, как Ньютон открыл закон всемирного тяготения, его необходимо было проверить и доказать множество раз. Для этого совершались ряды расчетов и наблюдений. Придя к согласию с его положениями и исходя из точности его показателя, экспериментальная форма оценивания служит ярким подтверждением ОТО. Измерение квадрупольных взаимодействий тела, что вращается, но антенны его остаются неподвижными, показывают нам, что процесс наращивания δ зависит от потенциала r -(1+δ) , на расстоянии в несколько метров и находится в пределе (2,1±6,2).10 -3 . Ряд других практических подтверждений позволили этому закону утвердиться и принять единую форму, без наличия модификаций. В 2007 г. данную догму перепроверили на расстоянии, меньшем сантиметра (55 мкм-9,59 мм). Учитывая погрешности эксперимента, ученые исследовали диапазон расстояния и не обнаружили явных отклонений в этом законе.

Наблюдение за орбитой Луны по отношению к Земле также подтвердило его состоятельность.

Евклидово пространство

Классическая теория тяготения Ньютона связана с евклидовым пространством. Фактическое равенство с достаточно большой точностью (10 -9) показателей меры расстояния в знаменателе равенства, рассмотренного выше, показывает нам эвклидову основу пространства Ньютоновской механики, с трехмерной физической формой. В такой точке материи площадь сферической поверхности имеет точную пропорциональность по отношению к величине квадрата ее радиуса.

Данные из истории

Рассмотрим краткое содержание истории открытия закона всемирного тяготения.

Идеи выдвигались и другими учеными, живших перед Ньютоном. Размышления о ней посещали Эпикура, Кеплера, Декарта, Роберваля, Гассенди, Гюйгенса и других. Кеплер выдвигал предположение о том, что сила тяготения имеет обратную пропорцию расстоянию от звезды Солнца и распространение имеет лишь в эклиптических плоскостях; по мнению Декарта, она была последствием деятельности вихрей в толще эфира. Существовал ряд догадок, который содержал в себе отражение правильных догадок о зависимости от расстояния.

Письмо от Ньютона Галлею содержало информацию о том, что предшественниками самого сэра Исаака были Гук, Рен и Буйо Исмаэль. Однако до него никому не удалось четко, при помощи математических методов, связать закон тяготения и планетарное движение.

История открытия закона всемирного тяготения тесно связанна с трудом «Математические начала натуральной философии» (1687). В этой работе Ньютон смог вывести рассматриваемый закон благодаря эмпирическому закону Кеплера, уже бывшему к тому времени известным. Он нам показывает, что:

  • форма движения любой видимой планеты свидетельствует о наличичи центральной силы;
  • сила притяжения центрального типа образует эллиптические или гиперболические орбиты.

О теории Ньютона

Осмотр краткой истории открытия закона всемирного тяготения также может указать нам на ряд отличий, которые выделяли ее на фоне предшествующих гипотез. Ньютон занимался не только публикацией предлагаемой формулы рассматриваемого явления, но и предлагал модель математического типа в целостном виде:

  • положение о законе тяготения;
  • положение о законе движения;
  • систематика методов математических исследований.

Данная триада могла в достаточно точной мере исследовать даже самые сложные движения небесных объектов, таким образом создавая основу для небесной механики. Вплоть до начала деятельности Эйнштейна в данной модели наличие принципиального набора поправок не требовалось. Лишь математические аппараты пришлось значительно улучшить.

Объект для обсуждений

Обнаруженный и доказанный закон в течение всего восемнадцатого века стал известным предметом активных споров и скрупулезных проверок. Однако век завершился общим согласием с его постулатами и утверждениям. Пользуясь расчетами закона, можно было точно определить пути движения тел на небесах. Прямая проверка была совершена в 1798 году. Он сделал это, используя весы крутильного типа с большой чувствительностью. В истории открытия всемирного закона тяготения необходимо выделить особое место толкованиям, введенным Пуассоном. Он разработал понятие потенциала гравитации и Пуассоново уравнение, при помощи которого можно было исчислять данный потенциал. Такой тип модели позволял заниматься исследованием гравитационного поля в условиях наличия произвольного распределения материи.

В теории Ньютона было немало трудностей. Главной из них можно было считать необъяснимость дальнодействия. Нельзя было точно ответить на вопрос о том, как силы притяжения пересылаются сквозь вакуумное пространство с бесконечной скоростью.

«Эволюция» закона

Последующие двести лет, и даже больше, множеством ученых-физиков были предприняты попытки предложить разнообразные способы по усовершенствованию теории Ньютона. Данные усилия окончились триумфом, совершенным в 1915 году, а именно сотворением Общей теории относительности, которую создал Эйнштейн. Он смог преодолеть весь набор трудностей. В согласии с принципом соответствия теория Ньютона оказалась приближением к началу работы над теорией в более общем виде, которое можно применять при наличии определенных условий:

  1. Потенциал гравитационной природы не может быть слишком большим в исследуемых системах. Солнечная система является примером соблюдения всех правил по движению небесного типа тел. Релятивистское явление находит себя в заметном проявлении смещения перигелия.
  2. Показатель скорости движения в данной группе систем является незначительным в сравнении со световой скоростью.

Доказательством того, что в слабом стационарном поле гравитации расчеты ОТО принимают форму ньютоновых, служит наличие скалярного потенциала гравитации в стационарном поле со слабо выраженными характеристиками сил, который способен удовлетворить условия уравнения Пуассона.

Масштаб квантов

Однако в истории ни научное открытие закона всемирного тяготения, ни Общая теория относительности не могли служить окончательной гравитационной теорией, поскольку обе недостаточно удовлетворительно описывают процессы гравитационного типа в масштабах квантов. Попытка создания квантово-гравитационной теории является одной из самых главных задач физики современности.

Со точки зрения квантовой гравитации взаимодействие между объектами создается при помощи взаимообмена виртуальными гравитонами. В соответствии с принципом неопределенности, энергетический потенциал виртуальных гравитонов имеет обратную пропорциональность промежутку времени, в котором он существовал, от точки излучения одним объектом до момента времени, в котором его поглотила другая точка.

Ввиду этого получается, что в малом масштабе расстояний взаимодействие тел влечет за собой и обмен гравитонами виртуального типа. Благодаря данным соображениям можно заключить положение о законе потенциала Ньютона и его зависимости в соответствии обратному показателю пропорциональности по отношению к расстоянию. Наличие аналогии между законами Кулона и Ньютона объясняется тем, что вес гравитонов равняется нулю. Это же значение имеет и вес фотонов.

Заблуждение

В школьной программе ответом на вопрос из истории, как Ньютон открыл закон всемирного тяготения, служит история о падающем плоде яблока. Согласно этой легенде, оно свалилось на голову ученому. Однако это - массово распространенное заблуждение, и в действительности все смогло обойтись без подобного случая возможной травмы головы. Сам Ньютон иногда подтверждал данный миф, но в действительности закон не был спонтанным открытием и не пришел в порыве сиюминутного озарения. Как было написано выше, он разрабатывался долгое время и был представлен впервые в трудах о «Математических началах», вышедших на обозрение публике в 1687 году.

Когда он пришел к великому результату: одна и та же причина вызывает явления поразительно широкого диапазона - от падения брошенного камня на Землю до движения огромных космических тел. Ньютон нашел эту причину и смог точно выразить ее в виде одной формулы - закона всемирного тяготения.

Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:



Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причем эта сила должна быть пропорциональна массе Земли. Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел. Отсюда вытекает формулировка закона всемирного тяготения.

Определение закона всемирного тяготения

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:



Коэффициент пропорциональности G называется гравитационной постоянной .

Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при m 1 =m 2 =1 кг и R =1 м получаем G=F (численно).

Нужно иметь в виду, что закон всемирного тяготения (4.5) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис.4.2 ). Подобного рода силы называются центральными.



Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками), также взаимодействуют с силой, определяемой формулой (4.5). В этом случае R - расстояние между центрами шаров. Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. (Такие силы и называются центральными.) Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R≈6400 км). Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (4.5), имея в виду, что R есть расстояние от данного тела до центра Земли.

Определение гравитационной постоянной

Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определенное наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее. Закон же тяготения дает новую связь между известными величинами с определенными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной. Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ:

Н м 2 /кг 2 =м 3 /(кг с 2).

Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами. Использовать для этого астрономические наблюдения нельзя, так как определить массы планет , Солнца, да и Земли, можно лишь на основе самого закона всемирного тяготения, если значение гравитационной постоянной известно. Опыт должен быть проведен на Земле с телами, массы которых можно измерить на весах.

Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы - самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10 -9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 4.3. На тонкой упругой нити подвешено легкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжелых шара. Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити. Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.



Из этих опытов было получено следующее значение для гравитационной постоянной:



Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большой величины. Например, Земля и Луна притягиваются друг к другу с силой F ≈2 10 20 H.

Зависимость ускорения свободного падения тел от географической широты

Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до ее поверхности у полюсов меньше, чем на экваторе. Другой, более существенной причиной является вращение Земли.

Равенство инертной и гравитационной масс

Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение. Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно. А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие ее на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.

Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Факт этот не может не вызывать удивления, если над ним хорошенько задуматься. Ведь масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определенное ускорение под действием данной силы. Эту массу естественно назвать инертной массой и обозначить через m и .

Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Массу, определяющую способность тел притягиваться друг к другу, следует назвать гравитационной массой m г .

Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что



Равенство (4.6) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.

Закон всемирного тяготения является одним из самых универсальных законов природы. Он справедлив для любых тел, обладающих массой.

Значение закона всемирного тяготения

Но если подойти к этой теме, более кардинально, то выясняется, что закон всемирного тяготения не везде есть возможность его применения. Этот закон нашел свое применение для тел, которые имеют форму шара, его можно использовать для материальных точек, а также он приемлем для шара, имеющего большой радиус, где этот шар может взаимодействовать с телами, гораздо меньшими, чем его размеры.

Как вы уже догадались из информации, предоставленной на этом уроке, что закон всемирного тяготения является основой в изучении небесной механики. А как вы знаете, небесная механика изучает движение планет.

Благодаря этому закону всемирного тяготения, появилась возможность в более точном определении расположения небесных тел и возможность вычисления их траектории.

Но вот для тела и бесконечной плоскости, а также для взаимодействия бесконечного стержня и шара эту формулу применять нельзя.

С помощью этого закона Ньютон смог объяснить не только то, как движутся планеты, но и почему возникают морские приливы и отливы. По истечении времени, благодаря трудам Ньютона, астрономам удалось открыть такие планеты Солнечной системы, как Нептун и Плутон.

Важность открытия закона всемирного тяготения заключается в том, что с его помощью появилась возможность делать прогнозы солнечных и лунных затмений и с точностью рассчитывать движения космических кораблей.

Силы всемирного тяготения являются наиболее универсальными со всех сил природы. Ведь их действие распространяется на взаимодействие между любыми телами, имеющими массу. А как известно, то любое тело обладает массой. Силы тяготения действуют сквозь любые тела, так как для сил тяготения нет приград.

Задача

А теперь, чтобы закрепить знания о законе всемирного тяготения, давайте попробуем рассмотреть и решить интересную задачу. Ракета поднялась на высоту h равную 990 км. Определите, насколько уменьшилась сила тяжести, действующая на ракету на высоте h, по сравнению с силой тяжести mg, действующей на нее у поверхности Земли? Радиус Земли R = 6400 км. Обозначим через m массу ракеты, а через M массу Земли.




На высоте h сила тяжести равняется:


Отсюда вычислим:


Подстановка значение даст результат:

Легенду про то, как Ньютон открыл закон всемирного тяготения, получив яблоком по макушке, придумал Вольтер. Причем сам Вольтер уверял, что эту правдивую историю ему рассказала любимая племянница Ньютона Кэтрин Бартон. Вот только странно, что ни сама племянница, ни ее очень близкий друг Джонатан Свифт, в своих воспоминаниях о Ньютоне про судьбоносное яблоко никогда не упоминали. Кстати и сам Исаак Ньютон, подробно записывая в своих тетрадях результаты экспериментов по поведению разных тел, отмечал только сосуды, наполненные золотом, серебром, свинцом, песком, стеклом водой или пшеницей, ни как ни о яблоке. Впрочем, это не помешало потомкам Ньютона водить экскурсантов по саду в имении Вулсток и показывать им ту самую яблоню, пока ее не сломала буря.

Да, яблоня была, и яблоками наверняка с нее падали, но насколько велика заслуга яблока в деле открытия закона всемирного тяготения?

Споры о яблоке не затихают вот уже 300 лет, так же как и споры о самом законе всемирного тяготения верее о том, кому принадлежит приоритет открытия.ук

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Закон всемирного тяготения был открыт еще в XVII веке и дал колоссальное развитие для физики того времени. Так кто открыл этот закон, и почему он так важен для науки?

Определение закона всемирного тяготения

Датский астроном Тихо Браге, долгие годы наблюдавший за движением планет, накопил огромное количество интересных данных, но не сумел их обработать. Зато это смог сделать его ученик Иоганн Кеплер. Используя идею Коперника о гелиоцентрической системе и результаты наблюдений Тихо Браге, Кеплер установил законы движения планет вокруг Солнца. Однако и он не смог объяснить динамику этого движения, то есть почему планеты движутся именно по таким законам.

И вот тогда настало время Исаака Ньютона, уже открывшего три основных закона динамики. Ньютон предположил, что ряд явлений, казалось бы не имеющих между собой ничего общего, вызваны одной причиной – силами тяготения. Проведя многочисленные расчеты, ученый пришел к выводу, что все тела в природе притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Рис. 1. Портрет Ньютона.

Вот как Ньютон пришел к этому заключению. Из второго закона Ньютона (динамики) следует, что ускорение, которое получает тело под действием силы, обратно пропорционально массе тела: $a ={ F \over m}$, но ускорение свободного падения $g = 9,8 {м \over с^2}$ не зависит от массы тела. И это представляется возможным только в том случае, если сила, с которой Земля притягивает тело, изменяется пропорционально массе тела.

По третьему закону Ньютона силы, с которыми взаимодействуют тела, равны по модулю. Если сила, действующая на одно тело, пропорциональна массе этого тела, то равная ей сила, действующая на второе тело, очевидно, пропорциональна массе второго тела.

Но силы, действующие на оба тела, равны, следовательно они пропорциональны массе как первого, так и второго тела.

Исаак Ньютон открыл этот закон в возрасте 23 лет, но на протяжении девяти лет не опубликовал его, так как имевшиеся тогда неверные данные о расстоянии между Землей и Луной не подтверждали его идею. Лишь в 1667 году, после уточнения этого расстояния, закон всемирного тяготения был наконец отдан в печать.

Вот формулировка и определение закона всемирного тяготения: все тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Эту силу называют силой тяготения.

Рис. 2. Формула закона всемирного тяготения.

Сила тяготения очень мала и становится заметной только тогда, когда хотя бы одно из взаимодействующих тел имеет большую массу (планета, звезда).

Рис. 3. Планеты солнечной системы.

Из этого закона следует еще один существенный признак массы: масса отражает свойство тела притягиваться к другим телам и определяет силу этого притяжения.

Применение закона всемирного тяготения

Как и любые другие законы, закон всемирного тяготения имеет определенные границы применимости. Он справедлив для:

  • материальных точек;
  • тел, имеющих форму шара;
  • шара большого радиуса, взаимодействующего с телами, размеры которых много меньше размеров шара.

Закон неприменим, например, для взаимодействия бесконечного стержня и шара. В этом случае сила тяготения обратно пропорциональна только расстоянию, а не квадрату расстояния. А, скажем, сила притяжения между телом и бесконечной плоскостью вообще не зависит от расстояния.

Что мы узнали?

В 9 классе очень важной является тема всемирного тяготения. В этой статье кратко рассказывается про открытие и применение этого закона, а также об ученых, которые внесли свой вклад для развития этого закона.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 125.

Класси́ческая тео́рия тяготе́ния Ньютона (Зако́н всемирного тяготе́ния Ньютона) - закон, описывающий гравитационное взаимодействие в рамках классической механики . Этот закон был открыт Ньютоном около 1666 года. Он гласит, что сила F {\displaystyle F} гравитационного притяжения между двумя материальными точками массы m 1 {\displaystyle m_{1}} и m 2 {\displaystyle m_{2}} , разделёнными расстоянием r {\displaystyle r} , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними - то есть:

F = G ⋅ m 1 ⋅ m 2 r 2 {\displaystyle F=G\cdot {m_{1}\cdot m_{2} \over r^{2}}}

Здесь G {\displaystyle G} - гравитационная постоянная , равная 6,67408(31)·10 −11 м³/(кг·с²) .

Энциклопедичный YouTube

    1 / 5

    ✪ Введение в закон всемирного тяготения Ньютона

    ✪ Закон Всемирного тяготения

    ✪ физика ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ 9 класс

    ✪ Про Исаака Ньютона (Краткая история)

    ✪ Урок 60. Закон всемирного тяготения. Гравитационная постоянная

    Субтитры

    Теперь немного узнаем о тяготении, или гравитации. Как вы знаете, тяготение, особенно в начальном или даже в довольно углубленном курсе физики - это такое понятие, которое можно вычислить и узнать основные параметры, которыми оно обусловлено, но на самом деле тяготение не вполне поддается пониманию. Пусть даже вы знакомы с общей теорией относительности - если вас спросят, что такое тяготение, вы можете ответить: это искривление пространства-времени и тому подобное. Однако все равно трудно получить интуитивное представление, по какой причине два объекта, только лишь потому, что у них есть так называемая масса, притягиваются друг к другу. По крайней мере, для меня это мистика. Отметив это, приступим к рассмотрению понятия о тяготении. Будем делать это, изучая закон всемирного тяготения Ньютона, справедливый для большинства ситуаций. Этот закон гласит: сила взаимного гравитационного притяжения F между двумя материальными точками, обладающими массами m₁ и m₂, равна произведению гравитационной постоянной G на массу первого объекта m₁ и второго объекта m₂, деленному на квадрат расстояния d между ними. Это довольно несложная формула. Попробуем преобразовать ее и посмотрим, нельзя ли получить какие-то хорошо знакомые нам результаты. Используем эту формулу для расчета ускорения свободного падения вблизи поверхности Земли. Давайте нарисуем сперва Землю. Просто чтобы понимать, о чем мы с вами говорим. Это наша Земля. Допустим, нам надо вычислить гравитационное ускорение, действующее на Сэла, то есть на меня. Вот он я. Попытаемся применить это уравнение для расчета величины ускорения моего падения к центру Земли, или к центру масс Земли. Величина, обозначенная заглавной буквой G - это универсальная гравитационная постоянная. Еще раз: G - это универсальная гравитационная постоянная. Хотя, насколько я знаю, хоть я и не эксперт в этом вопросе, мне кажется, ее значение может меняться, то есть это не настоящая постоянная, и я предполагаю, что при разных измерениях ее величина различается. Но для наших потребностей, а также в большинстве курсов физики, это постоянная, константа, равная 6,67 * 10^(−11) кубических метров, деленных на килограмм на секунду в квадрате. Да, ее размерность выглядит странно, но вам достаточно понять, что это - условные единицы, необходимые, чтобы в результате умножения на массы объектов и деления на квадрат расстояния получить размерность силы - ньютон, или килограмм на метр, деленный на секунду в квадрате. Так что об этих единицах измерения не стоит беспокоиться: просто знайте, что нам придется работать с метрами, секундами и килограммами. Подставим это число в формулу для силы: 6,67 * 10^(−11). Поскольку нам нужно знать ускорение, действующее на Сэла, то m₁ равна массе Сэла, то есть меня. Не хотелось бы разоблачать в этом сюжете, сколько я вешу, так что оставим эту массу переменной, обозначив ms. Вторая масса в уравнении - это масса Земли. Выпишем ее значение, заглянув в Википедию. Итак, масса Земли равна 5,97 * 10^24 килограммов. Да, Земля помассивнее Сэла. Кстати, вес и масса - разные понятия. Итак, сила F равна произведению гравитационной постоянной G на массу ms, затем на массу Земли, и все это делим на квадрат расстояния. Вы можете возразить: какое же расстояние между Землей и тем, что на ней стоит? Ведь если предметы соприкасаются, расстояние равно нулю. Здесь важно понять: расстояние между двумя объектами в данной формуле - это расстояние между их центрами масс. В большинстве случаев центр масс человека расположен примерно в трех футах над поверхностью Земли, если человек не слишком высокий. Как бы там ни было, мой центр масс может находиться на высоте три фута над землей. А где центр масс Земли? Очевидно, в центре Земли. А радиус Земли у нас равен чему? 6371 километр, или примерно 6 миллионов метров. Поскольку высота моего центра масс составляет около одной миллионной расстояния до центра масс Земли, то в данном случае ею можно пренебречь. Тогда расстояние будет равно 6 и так далее, как и все остальные величины, нужно записать его в стандартном виде - 6,371 * 10^6, поскольку 6000 км - это 6 миллионов метров, а миллион - это 10^6. Пишем, округляя все дроби до второго знака после запятой, расстояние равно 6,37 * 10^6 метров. В формуле стоит квадрат расстояния, поэтому возведем все в квадрат. Попробуем теперь упростить. Вначале перемножим величины в числителе и вынесем вперед переменную ms. Тогда сила F равна массе Сэла на всю верхнюю часть, вычислим ее отдельно. Итак, 6,67 умножить на 5,97 равно 39,82. 39,82. Это произведение значащих частей, которое теперь следует умножить на 10 в нужной степени. 10^(−11) и 10^24 имеют одинаковое основание, поэтому для их перемножения достаточно сложить показатели степени. Сложив 24 и −11, получим 13, в итоге имеем 10^13. Найдем знаменатель. Он равен 6,37 в квадрате, умноженное на 10^6 также в квадрате. Как вы помните, если число, записанное в виде степени, возводится в другую степень, то показатели степеней перемножаются, а значит, 10^6 в квадрате равно 10 в степени 6, умноженной на 2, или 10^12. Далее вычислим квадрат числа 6,37 с помощью калькулятора и получим… Возводим 6,37 в квадрат. И это 40,58. 40,58. Осталось разделить 39,82 на 40,58. Делим 39,82 на 40,58, что равняется 0,981. Потом делим 10^13 на 10^12, что равно 10^1, или просто 10. А 0,981, умноженное на 10, это 9,81. После упрощения и несложных расчетов получили, что сила тяготения вблизи поверхности Земли, действующая на Сэла, равна массе Сэла, умноженной на 9,81. Что нам это дает? Можно ли теперь вычислить гравитационное ускорение? Известно, что сила равна произведению массы на ускорение, поэтому и сила тяготения просто равна произведению массы Сэла на гравитационное ускорение, которое принято обозначать строчной буквой g. Итак, с одной стороны, сила притяжения равна числу 9,81, умноженному на массу Сэла. С другой, она же равна массе Сэла на гравитационное ускорение. Разделив обе части равенства на массу Сэла, получим, что коэффициент 9,81 и есть гравитационное ускорение. И если бы мы включили в расчеты полную запись единиц размерности, то, сократив килограммы, увидели бы, что гравитационное ускорение измеряется в метрах, деленных на секунду в квадрате, как и любое ускорение. Также можно заметить, что полученное значение очень близко к тому, которое мы использовали при решении задач о движении брошенного тела: 9,8 метров в секунду в квадрате. Это впечатляет. Решим еще одну короткую задачу на тяготение, потому что у нас осталось пара минут. Предположим, у нас есть другая планета под названием Земля Малышка. Пусть радиус Малышки rS вдвое меньше радиуса Земли rE, и ее масса mS также равна половине массы Земли mE. Чему будет равна сила тяжести, действующая здесь на какой-либо объект, и насколько она меньше силы земного тяготения? Хотя, давайте оставим задачу на следующий раз, потом ее решу. До встречи. Subtitles by the Amara.org community

Свойства ньютоновского тяготения

В ньютоновской теории каждое массивное тело порождает силовое поле притяжения к этому телу, которое называется гравитационным полем . Это поле потенциально , и функция гравитационного потенциала для материальной точки с массой M {\displaystyle M} определяется формулой:

φ (r) = − G M r . {\displaystyle \varphi (r)=-G{\frac {M}{r}}.}

В общем случае, когда плотность вещества ρ {\displaystyle \rho } распределена произвольно, удовлетворяет уравнению Пуассона :

Δ φ = − 4 π G ρ (r) . {\displaystyle \Delta \varphi =-4\pi G\rho (r).}

Решение этого уравнения записывается в виде:

φ = − G ∫ ρ (r) d V r + C , {\displaystyle \varphi =-G\int {\frac {\rho (r)dV}{r}}+C,}

где r {\displaystyle r} - расстояние между элементом объёма d V {\displaystyle dV} и точкой, в которой определяется потенциал φ {\displaystyle \varphi } , C {\displaystyle C} - произвольная постоянная.

Сила притяжения, действующая в гравитационном поле на материальную точку с массой m {\displaystyle m} , связана с потенциалом формулой:

F (r) = − m ∇ φ (r) . {\displaystyle F(r)=-m\nabla \varphi (r).}

Сферически симметричное тело создаёт за своими пределами такое же поле, как материальная точка той же массы, расположенная в центре тела.

Траектория материальной точки в гравитационном поле, создаваемом много большей по массе материальной точкой, подчиняется законам Кеплера . В частности, планеты и кометы в Солнечной системе движутся по эллипсам или гиперболам . Влияние других планет, искажающее эту картину, можно учесть с помощью теории возмущений .

Точность закона всемирного тяготения Ньютона

Экспериментальная оценка степени точности закона тяготения Ньютона является одним из подтверждений общей теории относительности . Опыты по измерению квадрупольного взаимодействия вращающегося тела и неподвижной антенны показали , что приращение δ {\displaystyle \delta } в выражении для зависимости ньютоновского потенциала r − (1 + δ) {\displaystyle r^{-(1+\delta)}} на расстояниях нескольких метров находится в пределах (2 , 1 ± 6 , 2) ∗ 10 − 3 {\displaystyle (2,1\pm 6,2)*10^{-3}} . Другие опыты также подтвердили отсутствие модификаций в законе всемирного тяготения .

Закон всемирного тяготения Ньютона в 2007 г. был проверен и на расстояниях, меньших одного сантиметра (от 55 мкм до 9,53 мм). С учетом погрешностей эксперимента в исследованном диапазоне расстояний отклонений от закона Ньютона не обнаружено .

Прецизионные лазерные дальнометрические наблюдения за орбитой Луны подтверждают закон всемирного тяготения на расстоянии от Земли до Луны с точностью 3 ⋅ 10 − 11 {\displaystyle 3\cdot 10^{-11}} .

Связь с геометрией евклидова пространства

Факт равенства с очень высокой точностью 10 − 9 {\displaystyle 10^{-9}} показателя степени расстояния в знаменателе выражения для силы тяготения числу 2 {\displaystyle 2} отражает евклидову природу трёхмерного физического пространства механики Ньютона. В трёхмерном евклидовом пространстве площадь поверхности сферы точно пропорциональна квадрату её радиуса

Исторический очерк

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур , Гассенди , Кеплер , Борелли , Декарт , Роберваль , Гюйгенс и другие . Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире . Были, впрочем, догадки с правильной зависимостью от расстояния; Ньютон в письме к Галлею упоминает как своих предшественников Буллиальда , Рена и Гука . Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

  • закон тяготения;
  • закон движения (второй закон Ньютона);
  • система методов для математического исследования (математический анализ).

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики . До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.

Отметим, что теория тяготения Ньютона уже не была, строго говоря, гелиоцентрической . Уже в задаче двух тел планета вращается не вокруг Солнца, а вокруг общего центра тяжести, так как не только Солнце притягивает планету, но и планета притягивает Солнце. Наконец, выяснилась необходимость учесть влияние планет друг на друга.

В течение XVIII века закон всемирного тяготения был предметом активной дискуссии (против него выступали сторонники школы Декарта) и тщательных проверок. К концу века стало общепризнано, что закон всемирного тяготения позволяет с огромной точностью объяснить и предсказать движения небесных тел. Генри Кавендиш в 1798 году осуществил прямую проверку справедливости закона тяготения в земных условиях, используя исключительно чувствительные крутильные весы . Важным этапом стало введение Пуассоном в 1813 году понятия гравитационного потенциала и уравнения Пуассона для этого потенциала; эта модель позволяла исследовать гравитационное поле при произвольном распределении вещества . После этого ньютоновский закон стал рассматриваться как фундаментальный закон природы.

В то же время ньютоновская теория содержала ряд трудностей. Главная из них - необъяснимое дальнодействие : сила притяжения передавалась непонятно как через совершенно пустое пространство, причём бесконечно быстро. По существу ньютоновская модель была чисто математической, без какого-либо физического содержания. Кроме того, если Вселенная, как тогда предполагали, евклидова и бесконечна, и при этом средняя плотность вещества в ней ненулевая, то возникает гравитационный парадокс . В конце XIX века обнаружилась ещё одна проблема: расхождение теоретического и наблюдаемого смещения перигелия Меркурия .

Дальнейшее развитие

Общая теория относительности

На протяжении более двухсот лет после Ньютона физики предлагали различные пути усовершенствования ньютоновской теории тяготения. Эти усилия увенчались успехом в 1915 году , с созданием общей теории относительности Эйнштейна , в которой все указанные трудности были преодолены. Теория Ньютона, в полном согласии с принципом соответствия , оказалась приближением более общей теории, применимым при выполнении двух условий:

В слабых стационарных гравитационных полях уравнения движения переходят в ньютоновы (гравитационный потенциал). Для доказательства покажем, что скалярный гравитационный потенциал в слабых стационарных гравитационных полях удовлетворяет уравнению Пуассона

Δ Φ = − 4 π G ρ {\displaystyle \Delta \Phi =-4\pi G\rho } .

Известно (Гравитационный потенциал), что в этом случае гравитационный потенциал имеет вид:

Φ = − 1 2 c 2 (g 44 + 1) {\displaystyle \Phi =-{\frac {1}{2}}c^{2}(g_{44}+1)} .

Найдем компоненту тензора энергии-импульса из уравнений гравитационного поля общей теории относительности:

R i k = − ϰ (T i k − 1 2 g i k T) {\displaystyle R_{ik}=-\varkappa (T_{ik}-{\frac {1}{2}}g_{ik}T)} ,

где R i k {\displaystyle R_{ik}} - тензор кривизны . Для мы можем ввести кинетический тензор энергии-импульса ρ u i u k {\displaystyle \rho u_{i}u_{k}} . Пренебрегая величинами порядка u / c {\displaystyle u/c} , можно положить все компоненты T i k {\displaystyle T_{ik}} , кроме T 44 {\displaystyle T_{44}} , равными нулю. Компонента T 44 {\displaystyle T_{44}} равна T 44 = ρ c 2 {\displaystyle T_{44}=\rho c^{2}} и, следовательно T = g i k T i k = g 44 T 44 = − ρ c 2 {\displaystyle T=g^{ik}T_{ik}=g^{44}T_{44}=-\rho c^{2}} . Таким образом, уравнения гравитационного поля принимают вид R 44 = − 1 2 ϰ ρ c 2 {\displaystyle R_{44}=-{\frac {1}{2}}\varkappa \rho c^{2}} . Вследствие формулы

R i k = ∂ Γ i α α ∂ x k − ∂ Γ i k α ∂ x α + Γ i α β Γ k β α − Γ i k α Γ α β β {\displaystyle R_{ik}={\frac {\partial \Gamma _{i\alpha }^{\alpha }}{\partial x^{k}}}-{\frac {\partial \Gamma _{ik}^{\alpha }}{\partial x^{\alpha }}}+\Gamma _{i\alpha }^{\beta }\Gamma _{k\beta }^{\alpha }-\Gamma _{ik}^{\alpha }\Gamma _{\alpha \beta }^{\beta }}

значение компоненты тензора кривизны R 44 {\displaystyle R_{44}} можно взять равным R 44 = − ∂ Γ 44 α ∂ x α {\displaystyle R_{44}=-{\frac {\partial \Gamma _{44}^{\alpha }}{\partial x^{\alpha }}}} и так как Γ 44 α ≈ − 1 2 ∂ g 44 ∂ x α {\displaystyle \Gamma _{44}^{\alpha }\approx -{\frac {1}{2}}{\frac {\partial g_{44}}{\partial x^{\alpha }}}} , R 44 = 1 2 ∑ α ∂ 2 g 44 ∂ x α 2 = 1 2 Δ g 44 = − Δ Φ c 2 {\displaystyle R_{44}={\frac {1}{2}}\sum _{\alpha }{\frac {\partial ^{2}g_{44}}{\partial x_{\alpha }^{2}}}={\frac {1}{2}}\Delta g_{44}=-{\frac {\Delta \Phi }{c^{2}}}} . Таким образом, приходим к уравнению Пуассона:

Δ Φ = 1 2 ϰ c 4 ρ {\displaystyle \Delta \Phi ={\frac {1}{2}}\varkappa c^{4}\rho } , где ϰ = − 8 π G c 4 {\displaystyle \varkappa =-{\frac {8\pi G}{c^{4}}}}

Квантовая гравитация

Однако и общая теория относительности не является окончательной теорией гравитации, так как неудовлетворительно описывает гравитационные процессы в квантовых масштабах (на расстояниях порядка планковского , около 1,6⋅10 −35 ). Построение непротиворечивой квантовой теории гравитации - одна из важнейших нерешённых задач современной физики.

С точки зрения квантовой гравитации, гравитационное взаимодействие осуществляется путём обмена виртуальными гравитонами между взаимодействующими телами. Согласно принципу неопределенности , энергия виртуального гравитона обратно пропорциональна времени его существования от момента излучения одним телом до момента поглощения другим телом. Время существования пропорционально расстоянию между телами. Таким образом, на малых расстояниях взаимодействующие тела могут обмениваться виртуальными гравитонами с короткими и длинными длинами волн, а на больших расстояниях только длинноволновыми гравитонами. Из этих соображений можно получить закон обратной пропорциональности ньютоновского потенциала от расстояния. Аналогия между законом Ньютона и законом Кулона объясняется тем, что масса гравитона, как и масса

В физике существует огромное количество законов, терминов, определений и формул, которые объясняют все природные явления на земле и во Вселенной. Одним из основных является закон всемирного тяготения, который открыл великий и всем известный учёный Исаак Ньютон . Определение его выглядит вот так: два любых тела во Вселенной взаимно притягиваются друг к другу с определённой силой. Формула всемирного тяготения, которая и вычисляет эту силу, будет иметь вид: F = G*(m1*m2 / R*R).

Вконтакте

История открытия закона

Очень долгое время люди изучали небо . Они хотели знать все его особенности, все , царящие в недосягаемом космосе. По небу составляли календарь, вычисляли важные даты и даты религиозных праздников. Люди верили, что центром всей Вселенной является Солнце, вокруг которого вращаются все небесные субъекты.

По-настоящему бурный научный интерес к космосу и вообще к астрономии появился в XVI веке. Тихо Браге, великий учёный астроном, во время своих исследований наблюдал за перемещениями планет, записывал и систематизировал наблюдения. К тому моменту, как Исаак Ньютон открыл закон силы всемирного тяготения, в мире уже утвердилась система Коперника, согласно которой все небесные тела вращаются вокруг звёзды по определённым орбитам. Великий учёный Кеплер на основе исследований Браге, открыл кинематические законы, которые характеризуют движение планет.

Основываясь на законах Кеплера, Исаак Ньютон открыл свой и выяснил , что:

  • Движения планет указывают на наличие центральной силы.
  • Центральная сила приводит к движению планет по орбитам.

Разбор формулы

В формуле закона Ньютона фигурируют пять переменных:

Насколько точны вычисления

Поскольку закон Исаака Ньютона относится к механике, вычисления не всегда максимально точно отражают реальную силу, с которой тела взаимодействуют. Более того, данная формула может использоваться только в двух случаях:

  • Когда два тела, между которыми происходит взаимодействие, являются однородными объектами.
  • Когда одно из тел является материальной точкой, а другое - однородным шаром.

Поле тяготения

По третьему закону Ньютона мы пониманием, что силы взаимодействие двух тел одинаковы по значению, но противоположны по её направлению. Направление сил происходит строго вдоль прямой линии, которая соединяет центры масс двух взаимодействующих тел. Взаимодействие притяжения между телами происходит благодаря полю тяготения.

Описание взаимодействия и гравитации

Гравитация обладает полями очень дальнего взаимодействия . Другими словами, её влияние распространяется на очень большие, космических масштабов расстояния. Благодаря гравитации люди и все другие объекты притягиваются к земле, а земля и все планеты Солнечной системы притягиваются к Солнцу. Гравитация — это постоянное воздействие тел друг на друга, это явление, которое обусловливает закон всемирного тяготения. Очень важно понимать одну вещь - чем массивнее тело, тем большей гравитацией оно обладает. Земля имеет огромную массу, поэтому мы притягиваемся к ней, а Солнце весит в несколько миллионов раз больше, чем Земля, поэтому наша планета притягивается к звезде.

Альберт Эйнштейн, один из величайших физиков, утверждал, что тяготение между двумя телами происходит из-за искривления пространства-времени. Учёный был уверен, что пространство, подобно ткани, может продавливаться, и чем массивнее объект, тем сильнее эту ткань он будет продавливать. Эйнштейн стал автором теории относительности, которая гласит, что всё во Вселенной относительно, даже такая величина, как время.

Пример расчётов

Давайте попробуем, используя уже известную формулу закона всемирного тяготения, решить задачу по физике:

  • Радиус Земли примерно равен 6350 километрам. Ускорение свободного падения возьмём за 10. Необходимо найти массу Земли.

Решение: Ускорение свободного падения у Земли будет равно G*M / R^2. Из этого уравнения мы можем выразить массу Земли: M = g*R^2 / G. Остаётся только подставить в формулу значения: M = 10*6350000^2 / 6, 7 * 10^-11. Чтобы не мучаться со степенями, приведём уравнение к виду:

  • M = 10* (6,4*10^6)^2 / 6, 7 * 10^-11.

Посчитав, мы получаем, что масса Земли примерно равна 6*10^24 килограмм.