Морфологическая характеристика основных групп микроорганизмов. Морфология бактерий

Систематика и номенклатура микроорганизмов

Многочисленные микроорганизмы (бактерии, грибы, простейшие, вирусы) строго систематизированы в определенном порядке по их сходству, различиям и взаимоотношениям между собой. Этим занимается специальная наука, называемая систематикой микроорганизмов. Раздел систематики, изучающий принципы классификации, называется таксономией.

Таксон - группа организмов, объединенная по определенным однородным свойствам в рамках той или иной таксономической категории. Самой крупной таксономической категорией является царство, более мелкими - подцарство, отдел, класс, порядок, семейство, род, вид, подвид и др.

В основу таксономии микроорганизмов положены их морфологические, физиологические, биохимические, молекулярно-биологические свойства. Весь мир микробов подразделяется на три царства:
. царство эукариотов (грибы и простейшие);
. царство прокариотов (бактерии, риккетсии, микоплазмы);
. царство вирусов.

Эукариоты подобны клеткам растений и животных. Они имеют поверхностную мембрану и внутриклеточную систему элементарных мембран, составляющих эндоплазматическую ретикулярную сеть и комплекс Гольджи. В цитоплазме эукариотов содержится оформленное ядро, митохондрии, рибосомы и ряд других органелл. Размножаются простые эукариоты половым и бесполым путями.

Прокариоты - организмы, не имеющие отграниченного ядра, внутриклеточной системы элементарных мембран и митохондрий, а некоторые лишены также клеточной стенки. Размножаются простым поперечным делением или почкованием.

Одной из основных таксономических категорий является вид (species) - совокупность особей, имеющих общий корень происхождения, сходный генотип и максимально близкие фенотипические признаки и свойства.

Совокупность однородных микроорганизмов, выделенных на питательной среде, характеризующаяся сходными морфологическими, тинкториальными (отношение к красителям), культуральными, биохимическими и антигенными свойствами, называется чистой культурой.

Чистая культура микроорганизмов, выделенных из определенного источника и отличающихся от других представителей вида, называется штаммом. Штамм - более узкое понятие, чем вид или подвид. Близким к штамму является понятие клона; клон - это совокупность потомков, выращенных из одной микробной клетки.

Решением Международного конгресса для микроорганизмов рекомендованы следующие таксономические категории: царство, отдел, класс, порядок, семейство, род, вид.

Название вида соответствует бинарной номенклатуре, т. е. состоит из двух слов. Например, кишечная палочка пишется как Escherichia coli. Первое слово - название рода, которое начинается с прописной буквы, второе слово обозначает вид и пишется со строчной буквы. При повторном написании вида родовое название сокращается до начальной буквы, например E. Сoli.

Формы бактерий

Всем бактериям присущи определенные морфологические свойства (форма, размер, характер их расположения в мазке) и тинкториальные свойства (способность окрашиваться).

Различают 4 основные формы бактерий (рис. 1.1): шаровидные (сферические), или кокковидные (от греч. kokkos - зерно); палочковидные (цилиндрические); извитые (спиралевидные); нитевидные. Кроме того, существуют бактерии, имеющие треугольную, звездообразную, тарелкообразную форму. Обнаружены так называемые квадратные бактерии, которые образуют скопления из 8-ми или 16-ти клеток в виде пласта.


Рис. 1.1. Формы одноклеточных бактерий: а - микрококки; б - диплококки; в - стрептококки; г - стафилококки; д - сарцины; е - палочковидные бактерии; ж - спириллы; з - вибрионы


Кокковидные бактерии обычно имеют форму правильного шара диаметром 1,0-1,5 мкм; некоторые - бобовидную, ланцетовидную, эллипсовидную форму. По характеру взаиморасположения образующихся после деления клеток кокки подразделяют на следующие группы:

1. Микрококки (от лат. Micros - малый). Клетки делятся в одной плоскости и чаще всего сразу же отделяются от материнской. Располагаются поодиночке, беспорядочно (рис. 1.1. а).

2. Диплококки (от лат. diplos - двойной). Деление происходит в одной плоскости с образованием пар клеток, имеющих либо бобовидную, либо ланцетовидную форму (рис. 1.1. б).

3. Стрептококки (от лат. streptos - цепочка). Деление клеток происходит в одной плоскости, но размножающиеся клетки сохраняют между собой связь и образуют различной длины цепочки, напоминающие нити бус. Многие стрептококки являются вредными для человека и вызывают различные заболевания: скарлатину, ангину, гнойные воспаления и др. Например Streptococcus pyogenes (рис. 1.1.в).

4. Стафилококки (от лат. staphyle - гроздь винограда). Клетки делятся в нескольких плоскостях, а образующиеся клетки располагаются скоплениями, напоминающими гроздья винограда (рис. 1.1. г).

5. Тетракокки (от лат. tetra - четыре). Деление происходит в двух взаимно перпендикулярных плоскостях с образованием тетрад.

6. Сарцины (от лат. sarcina - связка, тюк). Деление происходит в трех взаимно перпендикулярных плоскостях с образованием пакетов (тюков) из 8-ми, 16-ти, 32-х и большего числа особей. Особенно часто встречаются в воздухе (рис. 1.1.д).

Палочковидные (цилиндрические формы) (рис. 1.1.е). По расположению палочки подразделяют:
- на одиночные или беспорядочно расположенные - монобактерии. Например, Escherihia coli;
- располагающиеся попарно (по одной линии) - диплобациллы, диплобактерии. Например, Pseudomonas;
- располагающиеся цепочкой - стрептобациллы, стрептобактерии. Например, Bacillus.

Палочки, образующие спору, подразделяют:
- на бациллы - аэробные спорообразующие бактерии. Спора у таких палочек располагается, как правило, центрально, и её диаметр не превышает ширины бактерии.
- клостридии - анаэробные спорообразующие бактерии. Спора у них располагается терминально или субтерминально. Она крупная, что растягивает оболочку бактерий, и они внешне напоминают веретено или теннисную ракетку.

Извитые (спиралевидные) формы

По количеству и характеру завитков, а также по диаметру клеток они подразделяются на три группы:
1. Вибрионы (от греч. vibrio - извиваюсь, изгибаюсь) имеют один изгиб, не превышающий четверти оборота спирали. Например, Vibrio (рис. 1.1.з).

2. Спириллы (от греч. speira - завиток) - клетки, имеющие большой диаметр и малое (2-3) количество завитков. Например - Spirillium minor (рис. 1.1. ж).

3. Спирохеты (от греч. speira - завиток, chaita - волос) - спиралевидной формы подвижные бактерии.

Нитевидные формы

Различают два типа нитевидных бактерий: образующие временные нити и постоянные.

Временные нити (иногда с ветвлениями) образуют палочковидные бактерии при нарушении условий их роста или регуляции клеточного деления (микобактерии, коринебактерии, а также риккетсии, микоплазмы, многие грамотрицательные и грамположительные бактерии). При восстановлении механизма регуляции деления и нормальных условий роста эти бактерии восстанавливают обычные для них размеры.

Постоянные нитевидные формы образуются из палочковидных клеток, соединяющихся в длинные цепочки либо с помощью слизи, либо чехлами, либо мостиками (серобактерии, железобактерии).

Для изучения тинкториальных свойств микроорганизмов и их морфологии используют анилиновые красители (основные, кислые и нейтральные).

Наибольшее применение имеют основные краски: метиленовый синий, основной фуксин, генцианвиолет, везувин, хризоидин и др. Реже применяются нейтральные (нейтральный красный) и кислые (эозин) краски. Из названных красок готовят спиртовые, водно-спиртовые и водные растворы. В некоторых случаях для повышения красящей силы раствора к нему добавляют протравы, например карболовую кислоту, щелочь и др.

Для определения формы бактерий и их взаимного расположения в мазке используют простые методы окраски, т. е. окраска осуществляется одним красителем и мазок получается окрашенным одним цветом. Например, метиленовый синий. Эта окраска позволяет лучше выявить бобовидную форму и парное расположение кокков.

Для изучения структуры бактериальной клетки и выявления особенностей её строения применяют сложные методы окраски, которые включают в себя целый ряд красящих веществ, протравы и дифференцирующие вещества. К сложным методам окраски относятся методы Грама, Нессера, Ожешко и др.

Л.В. Тимощенко, М.В. Чубик

ВВЕДЕНИЕ

ПРЕДМЕТ И ЗАДАЧИ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

ИСТОРИЯ РАЗВИТИЯ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

СИСТЕМАТИКА И КЛАССИФИКАЦИЯ МИКРООРГАНИЗМОВ

Основы морфологии бактерий

БАКТЕРИИ

ВВЕДЕНИЕ

Наша планета населена огромным числом живых существ. Микроорганизмы наиболее древняя форма жизни на Земле, они появились 3-4 млрд. лет тому назад. Их можно обнаружить в почве, в пыли, в воде, в воздухе, на покровах животных и растений, внутри организмов и даже в горячих источниках, в космосе. Все живые организмы, населяющие нашу планету, относятся к макро- или микромиру.

К макромиру принадлежат организмы, видимые невооруженным глазом:

млекопитающие

пресмыкающиеся

птицы, рыбы и др.

К микромиру - представители живой природы, которых можно наблюдать с помощью микроскопа:

бактерии

простейшие

С точки зрения медицины все микробы можно разделить на 3 группы:

Ø Бактерии и грибы разрушают органическое вещество и участвуют в круговороте веществ в природе.

Ø Разлагая органические вещества, микроорганизмы являются причиной порчи продуктов.

Ø Некоторые микроорганизмы в результате своей жизнедеятельности разрушают человеческие строения, чем наносят огромный ущерб.

Ø Человек использует бактерии для очистки сточных вод.

Ø Человек получает с помощью микроорганизмов множество незаменимых продуктов (хлеб и сыр, вино и кумыс, льняная пряжа).

Ø Некоторые микроорганизмы являются причиной инфекционных заболеваний человека.

Ø В кишечнике человека и других животных живут многие бактерии-симбионты, которые приносят огромную пользу организму.

Ø Бактерии, живущие внутри организма, выделяют дополнительное тепло.

Ø Человек заставил микробы вырабатывать бактериальные удобрения, антибиотики, витамины, препараты для защиты растений. Такое техническое использование микроорганизмов называется биотехнологией.

Ø Методом генетической инженерии получают многие белковые биологические вещества, представляющие ценность для медицины.

ПРЕДМЕТ И ЗАДАЧИ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

Микробиология (греч.micros - малый, лат.bios - жизнь, logos- учение) - наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами, или микробами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами, населяющими нашу планету, - животными, растениями и человеком. Медицинская микробиология и иммунология тесно связаны со всеми медицинскими дисциплинами (инфектологией, терапией, педиатрией, хирургией, фтизиатрией, гигиеной, фармакологией и др.). Значительно возросла роль микробиологии, вирусологии и иммунологии в решении многих проблем здравоохранения.

Цель медицинской микробиологии - глубокое изучение структуры и важнейших биологических свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней. Микробиология изучает многообразный мир микробов. В своем развитии она разделилась на несколько самостоятельных дисциплин. В первую очередь её можно разделить на общую и частную микробиологию.

В зависимости от решаемых задач делится:

микробиология бактерия клетка морфология

ИСТОРИЯ РАЗВИТИЯ МЕДИЦИНСКОЙ МИКРОБИОЛОГИИ

Медицинская микробиология развилась в результате изучения инфекционных болезней.

История развития медицинской микробиологии как самостоятельной научной дисциплины насчитывает несколько этапов, обусловленных не столько временными периодами, сколько уровнем развития науки и техники.

Эвристический этап - период догадок и случайных находок. О существовании микробов догадывались уже древние мыслители и врачи. «Отец медицины» Гиппократ считал, что некоторые болезни человека вызываются какими-то невидимыми частицами, которые он называл миазами. О живой природе миазм начали догадываться значительно позднее. Римский поэт Веррон уже определенно считал миазмы живыми существами. Итальянский врач Джироламо Фракасторо, живший в середине века, писал, что заболевания передаются от человека человеку «живыми контагиями». Он создал учение о живом «контагии» - «мельчайших и недоступных нашим чувствам частиц», которые, проникая в организм человека, вызывают болезнь.

Величайшее открытие эвристического периода в медицинской микробиологии было сделано в конце 18 в. Э.Дженнером, который предложил вакцинацию против черной оспы путем нанесения на кожу человека содержимого оспин (пустул) от больных коров. Вирус коровьей оспы, содержащийся в пустулах, предохранял человека от заражения черной оспы. Еще не была доказана роль микробов в патологии, еще не была разработана теория защитных прививок, но микробиология начала реально помогать людям.

Морфологический этап микробиологии начался в 17 в., когда голландский натуралист А. Левенгук впервые увидел микробы, находящиеся в воде, травяных настоях, пищевых продуктах, ротовой полости, кишечнике и т.д. Для своих наблюдений он использовал двояковыпуклые линзы (лупы), приготовленные им самим. Они давали увеличение в 160 - 200 раз. Увиденные микробы А. Левенгук назвал ничтожными «зверушками» и подробно описал их в письмах в Британское королевское научное общество. все его описания форм микробов (шарообразные, палочковидные, извитые и др.) были настолько точны, что до настоящего времени сохранили свое значение.

Прообраз микроскопа как систему двух линз (объектива и окуляра) создал в 1590г. голландец З. Янсен. В последующие годы этот прибор многократно усовершенствовался. В результате в середине ХIХ века появился микроскоп, который по техническим возможностям не уступал современным световым микроскопам. Он мог увеличивать рассматриваемые предметы в 1000 раз. Создание микроскопов стимулировало развитие микробиологии. Начался период «охотников за микробами».

Первыми были открыты возбудители заболеваний волос и кожи человека: парши (Шенлейн), стригущего лишая (Груби), отрубевидного лишая (Эйхштедт) и молочницы (Лагенбек, Груби). Так зародилась наука о патогенных грибах - микология.

Развитие микробиологии ускорилось после того, как Р.Кох в конце ХIХ века разработал твердые питательные среды для получения чистых культур микроорганизмов, а также предложил использовать красители для изучения морфологии микробных клеток.

Различные микробиологические методики, разработанные Р. Кохом, позволили изучить возбудителей почти всех инфекционных заболеваний. Р. Кох выделил чистую культуру возбудителя сибирской язвы, туберкулёза (палочка Коха) и холеры (запятая Коха).

Среди всех «охотников за микробами» самым знаменитым был французский ученый Л. Пастер. Он доказал патологическую роль микробов родильной горячки, абсцессов и остеомиелита.

В последующие годы Т. Эшерих открыл кишечную палочку, Э. Ру - дифтерийную палочку, Д. Сальмон - возбудителей кишечных инфекций. Вслед за ними последовали новые открытия. К. Шига описал возбудителей дизентерии и коклюша, Г. Ганзен - проказы, С. Китазато - столбняка и чумы, а Ф. Шаудин и Э. Гофман - сифилиса.

Важнейшим событием в микробиологии было обнаружение ядовитых веществ (токсинов), выделяемых микробами. Это было сделано учеником Л. Пастера - Э. Ру, которые доказал, что основные симптомы и тяжесть течения дифтерии обусловлены токсином, выделяемым дифтерийной палочкой. Им был предложен способ лечения дифтерии при помощи специфических белков сыворотки крови (антител), нейтрализующих микробный токсин. Все перечисленные «охотники за микробами» заложили основы медицинской микробиологии.

Еще в конце ХIХ века обнаружено, что болезни человека могут быть вызваны не только бактериями, но и простейшими. Русские ученые Ф.А. Леш и П.Ф. Боровский открыли возбудителей амёбной дизентерии и кожного лейшманиоза. В дальнейшем доказана патогенная роль малярийного плазмодия, трихомонад, токсоплазм, балантий и других простейших. Зародилось новое направление в медицинской микробиологии - протозоология.

Русский ученый И.И. Мечников, работавший в институте Л. Пастера, первым изучил мир собственной микрофлоры организма и других микробов, окружающих человека. Он первым указал на большое значение микрофлоры для жизнедеятельности человека в норме и при патологии. Болезнетворные свойства микробов аутофлоры и окружающей среды проявляются только при ухудшении здоровья человека (условно-патогенные микробы). Таким образом, И.И. Мечников является основоположником нового раздела микробиологии - экологической микробиологии.

Морфологический период развития микробиологии не окончен, так как ученые делают все новые и новые открытия. Всего к настоящему времени было выделено и изучено около 4000 видов бактерий.

Развитие микробиологической техники, создание мелкопористых фильтров с определенным размером пор, использование метода культуры клеток позволили открыть вирусы. Период «охотников за микробами» сменился периодом «охотников за вирусами». Первым из них был русский ученый Д.И. Ивановский, выделивший в чистом виде (1892) вирус табачной мозаики. Вслед за ним Ф. Леффлер и П. Фрош открыли вирус ящура, поражающего животных, Т. Смит - вирус желтой лихорадки, вызывающий поражение печени у людей, Ф. Дэрелль - бактериофаг (вирус, поражающий бактерии), В. Смит с соавторами - вирус гриппа, Л.А. Зильбер - вирус энцефалита и онкогенные вирусы. Возникла новая наука - вирусология.

Развитию вирусологии способствовало изобретение в 30-е годы ХХ века электронного микроскопа, в котором в качестве осветителя используется источник электронов, фокусируемых электростатическими линзами. Электронный микроскоп в 10 000 раз увеличивает изображение объекта. Его создание позволило увидеть «портреты» вирусов.

Изучение патогенных вирусов продолжается. В 1982 году Л. Монтанье и Р. Гало открыли вирус иммунодефицита человека (ВИЧ/СПИД). В 2003 году китайские ученые описали вирус, вызывающий острый респираторный синдром (SARS) - атипичную пневмонию.

В 1963 году американский ученый К. Гайдушек доказал существование принципиально нового инфекционного начала, названного прионом. В отличие от всех других микробов прионы не содержат нуклеиновых кислот и являются белками с низкой молекулярной массой (инфекционные белковые молекулы). Они поражают клетки ЦНС, вызывают их разрыв и губкообразное перерождение, что закономерно заканчивается гибелью организма. Вызываемые прионами болезни стали называть «медленными инфекциями», так как между заражением и гибелью организма проходило от 5 до 20 лет. До настоящего времени не разработано средств лечения этих заболеваний.

Обнаружение возбудителей болезней сопровождалось изучением их биологических свойств. За морфологическим периодом развития микробиологии последовал ФИЗИОЛОГИЧЕСКИЙ. В этот период изучены процессы обмена веществ и дыхания у микробов, их ферментативная активность, размножение и рост на питательных средах. Физиологический период развития микробиологии связан с именем Л. Пастера. Он открыл ферментативную природу брожения, вызываемого жизнедеятельностью микробов, и заложил основы промышленной микробиологии, основал принципы стерилизации питательных сред. Изучение особенностей жизнедеятельности микробов привело к появлению противобактериальных препаратов, способных убивать микробы в организме или препятствовать их размножению (сульфаниламиды и антибиотики). Основоположниками химиотерапии можно считать П. Эрлиха, синтезировавшего сульфаниламид - стрептоцид. Первый антибиотик пенициллин выделен в химически чистом виде английским ученым А. Флемингом и отечественным микробиологом З. В. Ермольевой. С каждым годом расширяется список противобактериальных препаратов. В настоящее время их количество исчисляется сотнями. Были получены препараты, обладающие противовирусной активностью (интерферон).

С именами Л. Пастера, И.И. Мечникова и П. Эрлиха связан иммунологический этап развития микробиологии. В медицинскую практику вошли профилактические вакцины, приготовленные из микробов против многих инфекционных заболеваний, а также лечебные сыворотки, содержащие специфические антитела против микробных токсинов.

В ХХ веке начался этап развития молекулярно-генетической микробиологии и иммунологии. В это время изучали основы молекулярного строения микробов, антител, генетического аппарата клеток и, наконец, генетического кода человека, обеспечивающего, в частности, иммунный ответ организма.

СИСТЕМАТИКА И КЛАССИФИКАЦИЯ МИКРООРГАНИЗМОВ

М/о - это организмы, невидимые невооруженным глазом из-за их незначительных размеров.

Базовая категория (таксон) биологической классификации, отражающая определенную стадию эволюции отдельной популяции организмов - вид. Вид - эволюционно сложившаяся совокупность особей, имеющая единый генотип, который в стандартных условиях проявляется сходными морфологическими, биохимическими и другими признаками. Принципы таксономии и номенклатуры микроорганизмов

Живые организмы (микроорганизмы) М/о относятся к 3 царствам:

Прокариоты PROCARIOTAE:

Эубактерии

Грациликуты (тонкая клеточная стенка)

Фирмикуты (толстая клеточная стенка)

Спирохеты, риккетсии, хламидии, микоплазмы, актиномицеты. Архебактерии

Мендосикуты

Эукариоты EUCARIOTAE: Животные Растения Грибы ПростейшиеНеклеточные формы жизни VIRA: Вирусы Прионы Плазмиды

Для микроорганизмов приняты следующие категории (таксоны) таксономической иерархии (по восходящей): Вид - Род - Семейство - Порядок - Класс - Отдел - Царство.

Названия видов биноминальны (бинарны), то есть обозначаются двумя словами. Первое слово обозначает Род и пишется с заглавной буквы, второе слово обозначает Вид и пишется со строчной буквы.

Схема формирования биноминального названия микроорганизмов.



Примеры конструирования биноминального названия бактерий.

Вид бактерий

Условное обозначение принадлежности к:


Bacillus anthracis

Bacillus (палочка)

anthracis (уголь - «антрацит»)

Clostridium tetanus

Clostridium (веретено)

tetanus (судороги)

Staphilococcus aureus

Staphilococcus (гроздья винограда, шар)

aureus (золотистый цвет колонии)

Shigella dysenteriae

dysenteriae (расстройство кишечника)

coli (кишка)

Salmonella typhi

typhus («туман» - бред)


ОСНОВЫ МОРФОЛОГИИ БАКТЕРИЙ

Специализированные термины:

Штамм - культура микроорганизмов, выделенная из определенного конкретного источника (организма или объекта окружающей среды).

Форма бактерий. Размер бактерий.

Строение бактериальной клетки.

Характеристика некоторых групп бактерий.

ФОРМА БАКТЕРИЙ. РАЗМЕР БАКТЕРИЙ

Отдельным видам бактерий с достаточным постоянством присущи определенные формы и размер.

Выделяют три основные формы бактерий - шаровидные, палочковидные и извитые.

Шаровидные бактерии, или кокки

Форма шаровидная или овальная.

Микрококки - отдельно расположенные клетки.

Диплококки - располагаются парами.

Стрептококки - клетки округлой или вытянутой формы, составляющие цепочку.

Сарцины - располагаются в виде «пакетов» из 8 и более кокков. Стафилококки - кокки, расположенные в виде грозди винограда в результате деления в разных плоскостях.

Рис. 1. Шаровидные бактерии (энтерококки). Электронная микрофотография (ЭМ).

Палочковидные бактерии. Форма палочковидная, концы клетки могут быть заостренными, закругленными, обрубленными, расщепленными, расширенными. Палочки могут быть правильной и неправильной формы, в том числе ветвящиеся, например у актиномицетов.

По характеру расположения клеток в мазках выделяют:

Монобактерии - расположены отдельными клетками.

Диплобактерии - расположены по две клетки.

Стрептобактериии - после деления образуют цепочки клеток.

Палочковидные бактерии могут образовывать споры: бациллы и клостридии.

Рис. 2. Палочковидные бактерии (кишечная палочка). ЭМ.

Извитые бактерии

Форма - изогнутое тело в один или несколько оборотов.

Вибрионы - изогнутость тела не превышает одного оборота.

Спирохеты - изгибы тела в один или несколько оборотов.

Рис. 3. Извитые бактерии (холерный вибрион). ЭМ.

Размер бактерий

Микроорганизмы измеряются в микрометрах и нанометрах.

Средние размеры бактерий - 2 - 3 х 0,3 - 0,8 мкм.

Форма и размер - важный диагностический признак.

Способность бактерий изменять свою форму и величину называется полиморфизм.

БАКТЕРИИ

СТРОЕНИЕ БАКТЕРИАЛЬНОЙ КЛЕТКИ

Строение бактерий.

Тело бактерии состоит из цитоплазмы (с различными включениями) и цитоплазматической мембраны, окруженных клеточной стенкой.

Цитоплазма занимает основной объем бактериальной клетки. Важнейшим компонентом цитоплазмы является нуктеотид, который считается эквивалентом ядра и расположен в центральной зоне бактерии. Кроме нуклеотида, в цитоплазме находятся плазмиды, являющиеся факторами наследственности (их может быть от 1 до 200).

Цитоплазматическая мембрана ограничивает цитоплазму (участвует в транспорте питательных веществ).

Между клеточной стенкой и цитоплазматической мембраной находится пространство - периплазма, содержащая ферменты.

Клеточная стенка - прочная структура, придающая бактерии определенную форму. По типу строения клеточной стенки бактерии подразделяют на грамположительные с толстой стенкой и грамотрицательные с тонкой клеточной стенкой.

Основным компонентом клеточной стенки у грамположительных бактерий является пептидоглюкан, способный удерживать краску генцианвиолет в комплексе с йодом (сине-фиолетовый цвет) при обработке препарата спиртом.

Клетки бактерий в процессе жизнедеятельности образуют защитные органеллы - капсулы и споры.

Капсула - внешний уплотненный слизистый слой, примыкающий к клеточной стенке. Это защитный орган, который появляется у некоторых бактерий при попадании их в организм человека или животных. Капсула предохраняет м/о от защитных факторов организма (препятствуют захвату бактерий фагоцитами).

Спора - форма грамположительных бактерий, образующаяся при неблагоприятных условиях существования клетки (высушивание, дефицит питательных веществ, изменение температуры и др). Образование спор способствует сохранению вида и не имеет отношения к размножению бактерий.

Спорообразующие аэробные бактерии называются бациллами, а анаэробные - клостридиями.

Споры отличаются по форме, размерам и расположению в клетке. Они могут располагаться:


Жгутики обеспечивают подвижность микроба, их имеют только палочковидные бактерии, они берут начало от цитоплазматической мембраны.

По числу жгутиков различают:

Монотрих (один у холерного вибриона);

Перитрих (до сотен у кишечной палочки)

Амфитрихи - по одному или нескольку жгутиков на противоположных концах микробной клетки (спириллы)

Лофотрихи - имеют пучок жгутиков на одном из концов клетки.

Ворсинки, или пили, - нитевидные образования, более короткие, чем жгутики. Они отходят от поверхности бактерии, состоят из белка пилина и ответственны за прилипание микроба к поражаемой клетке. Среди пилей выделяют половые пили, присущие "мужским" клеткам-донорам, содержащим трансмиссивные плазмиды (F, R, Col). Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и так называемым нуклеоидом. Имеются дополнительные структуры: капсула, микрокапсула, жгутики, пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры.

Рис. 4. Строение бактериальной клетки (схема). Сapsule - капсула; Сell wall - клеточная стенка; Cytoplasmic membrane - цитоплазматическая мембрана; Mesosome - мезосома; Flagellum - жгутик; Pili - пили; Cytoplasma - цитоплазма; Nucleoid - нуклеоид; Ribosomes - рибосомы; Granular inclusion - включения.

Рис. 5. Определите форменные элементы бактериальной клетки.

Грамположительные бактерии имеют толстую (многослойную) клеточную стенку.

Окрашиваются по Граму в фиолетовый цвет.

Грамотрицательные бактерии имеют тонкую клеточную стенку, прикрытую снаружи тройным липидсодержащим слоем (внешняя мембрана).Окрашиваются по Граму в красный цвет.

Рис. 6. Строение клеточной стенки грамположительных (А) и грамотрицательных (Б) бактерий (схема).

У грамположительных бактерий (А) основной слой - пептидогликан - многослойный и пронизан тейхоевыми кислотами (толстая клеточная стенка); у грамотрицательных бактерий (Б) тонкий пептидогликан и над ним расположена внешняя мембрана, содержащая липиды (тонкая клеточная стенка).

Тинкториальные свойства - восприимчивость микроорганизмов к различным красителям.формы - бактерии, полностью лишенные клеточной стенки и способные размножаться.

Споры и спорообразование

Споры бактерий - своеобразная форма покоящихся бактерий, форма сохранения наследственной информации в неблагоприятных условиях внешней среды и не является способом размножения, как у грибов.

Процесс спорообразования: спорогенная зона - проспора - спора.

В благоприятных условиях споры прорастают за 4-5 часов. Образуют споры в течение 18-20 часов.

Рис. 7. Спора внутри бактериальной клетки (ЭМ).

Рис. 8. Споры сибиреязвенной палочки (светооптическая микроскопия, СМ).

  • 1.3. Распространенность микробов
  • 1.4. Роль микробов в патологии человека
  • 1.5. Микробиология - наука о микробах
  • 1.6. Иммунология - сущность и задачи
  • 1.7. Связь микробиологии с иммунологией
  • 1.8. История развития микробиологии и иммунологии
  • 1.9. Вклад отечественных ученых в разви­тие микробиологии и иммунологии
  • 1.10. Зачем нужны знания микробиологии и иммунологии врачу
  • Глава 2. Морфология и классификация микробов
  • 2.1. Систематика и номенклатура микробов
  • 2.2. Классификация и морфология бактерий
  • 2.3. Строение и классификация грибов
  • 2.4. Строение и классификация простейших
  • 2.5. Строение и классификация вирусов
  • Глава 3. Физиология микробов
  • 3.2. Особенности физиологии грибов и простейших
  • 3.3. Физиология вирусов
  • 3.4. Культивирование вирусов
  • 3.5. Бактериофаги (вирусы бактерий)
  • Глава 4. Экология микробов - микроэкология
  • 4.1. Распространение микробов в окружающей среде
  • 4.3. Влияние факторов окружающей среды на микробы
  • 4.4 Уничтожение микробов в окружающей среде
  • 4.5. Санитарная микробиология
  • Глава 5. Генетика микробов
  • 5.1. Строение генома бактерий
  • 5.2. Мутации у бактерий
  • 5.3. Рекомбинация у бактерий
  • 5.4. Передача генетической информации у бактерий
  • 5.5. Особенности генетики вирусов
  • Глава 6. Биотехнология. Генетическая инженерия
  • 6.1. Сущность биотехнологии. Цели и задачи
  • 6.2. Краткая история развития биотехнологии
  • 6.3. Микроорганизмы и процессы, приме­няемые в биотехнологии
  • 6.4. Генетическая инженерия и область ее применения в биотехнологии
  • Глава 7. Противомикробные препараты
  • 7.1. Химиотерапевтические препараты
  • 7.2. Механизмы действия противомикроб-ных химиопрепаратов
  • 7.3. Осложнения при антимикробной химиотерапии
  • 7.4. Лекарственная устойчивость бактерий
  • 7.5. Основы рациональной антибиотикотерапии
  • 7.6. Противовирусные средства
  • 7.7. Антисептические и дезинфицирующие вещества
  • Глава 8. Учение об инфекции
  • 8.1. Инфекционный процесс и инфекционная болезнь
  • 8.2. Свойства микробов - возбудителей инфекционного процесса
  • 8.3. Свойства патогенных микробов
  • 8.4. Влияние факторов окружающей среды на реактивность организма
  • 8.5. Характерные особенности инфекционных болезней
  • 8.6. Формы инфекционного процесса
  • 8.7. Особенности формирования патоген-ности у вирусов. Формы взаимодействия вирусов с клеткой. Особенности вирусных инфекций
  • 8.8. Понятие об эпидемическом процессе
  • ЧаСть II.
  • Глава 9. Учение об иммунитете и факторы неспецифической резистентности
  • 9.1. Введение в иммунологию
  • 9.2. Факторы неспецифической резистентности организма
  • Глава 10. Антигены и иммунная система человека
  • 10.2. Иммунная система человека
  • Глава 11. Основные формы иммунного реагирования
  • 11.1. Антитела и антителообразование
  • 11.2. Иммунный фагоцитоз
  • 11.4. Реакции гиперчувствительности
  • 11.5. Иммунологическая память
  • Глава 12. Особенности иммунитета
  • 12.1. Особенности местного иммунитета
  • 12.2. Особенности иммунитета при различ­ных состояниях
  • 12.3. Иммунный статус и его оценка
  • 12.4. Патология иммунной системы
  • 12.5. Иммунокоррекция
  • Глава 13. Иммунодиагностические реакции и их применение
  • 13.1. Реакции антиген-антитело
  • 13.2. Реакции агглютинации
  • 13.3. Реакции преципитации
  • 13.4. Реакции с участием комплемента
  • 13.5. Реакция нейтрализации
  • 13.6. Реакции с использованием меченых антител или антигенов
  • 13.6.2. Иммуноферментный метод, или анализ (ифа)
  • Глава 14. Иммунопрофилактика и иммунотерапия
  • 14.1. Сущность и место иммунопрофилактики и иммунотерапии в медицинской практике
  • 14.2. Иммунобиологические препараты
  • Часть III
  • Глава 15. Микробиологическая и иммунологическая диагностика
  • 15.1. Организация микробиологической и иммунологической лабораторий
  • 15.2. Оснащение микробиологической и иммунологической лабораторий
  • 15.3. Правила работы
  • 15.4. Принципы микробиологической диагностики инфекционных болезней
  • 15.5. Методы микробиологической диагностики бактериальных инфекций
  • 15.6. Методы микробиологической диагностики вирусных инфекций
  • 15.7. Особенности микробиологической диагностики микозов
  • 15.9. Принципы иммунологической диагностики болезней человека
  • Глава 16. Частная бактериология
  • 16.1. Кокки
  • 16.2. Палочки грамотрицательные факультативно-анаэробные
  • 16.3.6.5. Ацинетобактер (род Acinetobacter)
  • 16.4. Палочки грамотрицательные анаэробные
  • 16.5. Палочки спорообразующие грамположительные
  • 16.6. Палочки грамположительные правильной формы
  • 16.7. Палочки грамположительные неправильной формы, ветвящиеся бактерии
  • 16.8. Спирохеты и другие спиральные, изогнутые бактерии
  • 16.12. Микоплазмы
  • 16.13. Общая характеристика бактериальных зоонозных инфекций
  • Глава 17. Частная вирусология
  • 17.3. Медленные вирусные инфекции и прионные болезни
  • 17.5. Возбудители вирусных острых кишечных инфекций
  • 17.6. Возбудители парентеральных вирус­ных гепатитов в, d, с, g
  • 17.7. Онкогенные вирусы
  • Глава 18. Частная микология
  • 18.1. Возбудители поверхностных микозов
  • 18.2. Возбудители эпидермофитии
  • 18.3. Возбудители подкожных, или субкутанных, микозов
  • 18.4. Возбудители системных, или глубо­ких, микозов
  • 18.5. Возбудители оппортунистических микозов
  • 18.6. Возбудители микотоксикозов
  • 18.7. Неклассифицированные патогенные грибы
  • Глава 19. Частная протозоология
  • 19.1. Саркодовые (амебы)
  • 19.2. Жгутиконосцы
  • 19.3. Споровики
  • 19.4. Ресничные
  • 19.5. Микроспоридии (тип Microspora)
  • 19.6. Бластоцисты (род Blastocystis)
  • Глава 20. Клиническая микробиология
  • 20.1. Понятие о внутрибольничной инфекции
  • 20.2. Понятие о клинической микробиологии
  • 20.3. Этиология вби
  • 20.4. Эпидемиология вби
  • 20.7. Микробиологическая диагностика вби
  • 20.8. Лечение
  • 20.9. Профилактика
  • 20.10. Диагностика бактериемии и сепсиса
  • 20.11. Диагностика инфекций мочевыводящих путей
  • 20.12. Диагностика инфекций нижних дыхательных путей
  • 20.13. Диагностика инфекций верхних дыхательных путей
  • 20.14. Диагностика менингитов
  • 20.15. Диагностика воспалительных забо­леваний женских половых органов
  • 20.16. Диагностика острых кишечных инфекций и пищевых отравлений
  • 20.17. Диагностика раневой инфекции
  • 20.18. Диагностика воспалений глаз и ушей
  • 20.19. Микрофлора полости рта и ее роль в патологии человека
  • 20.19.1. Роль микроорганизмов при заболеваниях челюстно-лицевой области
  • 2.2. Классификация и морфология бактерий

    Классификация бактерий . Решением Международного кодекса для бактерий ре­комендованы следующие таксономические категории: класс, отдел, порядок, семейство, род, вид. Название вида соответствует бинар­ной номенклатуре, т. е. состоит из двух слов. Например, возбудитель сифилиса пишется как Treponema pallidum . Первое слово - на-

    звание рода и пишется с прописной буквы, второе слово обозначает вид и пишется со строчной буквы. При повторном упоминании вида родовое название сокращается до на­чальной буквы, например: Т. pallidum .

    Бактерии относятся к прокариотам, т.е. доядерным организмам, поскольку у них имеется примитивное ядро без оболочки, ядрышка, гистонов. а в цитоплазме отсутс­твуют высокоорганизованные органеллы (митохондрии, аппарат Гольджи, лизосомы и др.)

    В старом Руководстве Берджи по систематичес­кой бактериологии бактерии делили по особен­ностям клеточной стенки бактерий на 4 отдела:Gracilicutes - эубактерии с тонкой клеточнойстенкой, грамотрицательные; Firmicutes - эубак­терии с толстой клеточной стенкой, грамположи-тельные; Tenericutes - эубактерии без клеточной стенки; Mendosicutes - архебактерии с дефектной клеточной стенкой.

    Каждый отдел был разделен на секции, или группы, по окраске по Граму, форме клеток, потребности в кислороде, подвижности, особенностям метаболизма и питания.

    Согласно 2-му изданию (2001 г.) Руководства Берджи, бактерии делят на 2 домена: «Bacteria» и «Archaea» (табл. 2.1).

    Таблица. Характеристика доменов Bacteria и Archaea

    Домен «Bacteria» (эубактерии)

    Домен «Archae а» (архебактерии)

    В домене «Bacteria» можно выделить

    следующие бактерии:

    1)бактерии с тонкой клеточной стенкой, грамотрицательные*;

    2)бактерии с толстой клеточной стенкой, грамположительные**;

    3)бактерии бет клеточной стенки (класс Mollicutes - микоплаз- мы)

    Архсбактерии не содержат пепти-догликан в клеточной стенке. Они имеют особые рибосомы и рибосом-ные РНК (рРНК). Термин «архебак­терии- появился в 1977 г. Это одна из древних форм жизни, на что ука­зывает приставка «архе». Среди них нет возбудителей инфекций

    *Среди тонкостенных грамотрицательных эубактерий различают:

      сферические формы, или кокки (гонококки, менингококки, вейлонеллы);

      извитые формы - спирохеты и спириллы;

      палочковидные формы, включая риккетсии.

    ** К толстостенным грамположительным эубактериям относят:

      сферические формы, или кокки (стафилококки, стрептококки, пневмококки);

      палочковидные формы, а также актиномицеты (ветвящиеся, нитевидные бактерии), коринебактерии (булавовидные бак­терии), микобактерии и бифидобактерии (рис. 2.1).

    Большинство грамотрицательных бакте­рий объединены в тип протеобактериий. ос­нованный на сходстве по рибосомной РНК «Proteobacteria» - по имени греческого бога Протеуса. принимавшего разнообразные об­лики). Они появились от общего фотосинте-тического предка.

    Грамположительные бактерии, согласно изученным последовательностям рибосом­ной РНК, являются отдельной филогенети­ческой группой с двумя большими подот­делами - с высоким и низким соотноше­нием G + C (генетическое сходство). Как и протеобактерии, эта группа метаболически разнообразная.

    В домен « Bacteria » входят 22 типа, из кото­ рых медицинское значение имеют следующие:

    Тип Proteobacteria

    Класс Alphaproteobacteria. Роды : Rickettsia, Orientia, Ehrlichia, Bartonella, Brucella

    Класс Betaproteobacteria. Роды : Burkholderia, Alcaligenes, Bordetella, Neisseria, Kingella, Spirillum

    Класс Gammaproteobacteria. Роды : Francisella, Legionella, Coxiella, Pseudomonas, Moraxella, Acinetobacter, Vibrio, Enterobacter, Callimatobacterium, Citrobacter, Edwardsiella, Erwinia, Escherichia, Hafnia, Klebsiella, Morganella, Proteus, Providencia, Salmonella, Serratia, Shigella, Yersinia, Pasteurella

    Класс Deltaproteobacteria. Род: Bilophila

    Класс Epsilonproteobacteria. Роды : Campylobacter, Helicobacter, Wolinella

    Тип Firmicutes (главным образом грамполо ­ жительные )

    Класс Clostridia. Роды : Clostridium, Sarcina, Peptostreptococcus, Eubacterium, Peptococcus, Veillonella (грамотрицательные)

    Класс Mollicutes. Роды: Mycoplasma, Ureaplasma

    Класс Bacilli. Роды : Bacillus, Sporosarcina, Listeria, Staphylococcus, Gemella, Lactobacillus, Pediococcus, Aerococcus, Leuconostoc, Streptococcus, Lactococcus

    Тип Actinobacteria

    Класс Actinobacteria. Роды : Actinomyces, Arcanodacterium, Mobiluncus, Micrococcus, Rothia, Stomatococcus, Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, Bifidobacterium, Gardnerella

    Тип Clamydiae

    Класс Clamydiae. Роды : Clamydia, Clamydophila

    Тип Spirochaetes

    Класс Spirochaetes. Роды : Spirochaeta, Borrelia, Treponema, Leptospira

    Тип Bacteroidetes

    Класс Bacteroidetes. Роды : Bacteroides, Porphyromonas, Prevotella

    Класс Flavobacteria. Роды: Flavobacterium

    Подразделение бактерий по особенностям строения клеточной стенки связано с воз­можной вариабельностью их окраски в тот или иной цвет по методу Грама. Согласно этому методу, предложенному в 1884 г. дат­ским ученым X. Грамом, в зависимости от результатов окраски бактерии делятся на грамположительные, окрашиваемые в сине-фиолетовый цвет, и грамотрицательные, кра­сящиеся в красный цвет. Однако оказалось, что бактерии с так называемым грамположи-тельным типом клеточной стенки (более тол­стой, чем у грамотрицательных бактерий), например, бактерии рода Mobiluncus и не­которые спорообразующие бактерии, вместо обычной грамположительной окраски име­ют грамотрицательную окраску. Поэтому для таксономии бактерий бульшую значимость, чем окраска по Граму, имеют особенности строения и химического состава клеточных стенок.

    2.2.1. Формы бактерий

    Различают несколько основных форм бак­терий (см. рис. 2.1) - кокковидные, палочко­видные, извитые и ветвящиеся, нитевидные формы бактерий.

    Сферические формы, или кокки, - шаро­видные бактерии размером 0,5-1,0 мкм*, ко­торые по взаимному расположению делятся на микрококки, диплококки, стрептококки, тетракокки, сарцины и стафилококки.

      Микрококки (от греч. micros - малый) - отдельно расположенные клетки.

      Диплококки (от греч. diploos - двойной), или парные кокки, располагаются парами (пневмококк, гонококк, менингококк), так как клетки после деления не расходятся. Пневмококк (возбудитель пневмонии) име­ет с противоположных сторон ланцетовид­ную форму, а гонококк (возбудитель гонореи) и менингококк (возбудитель эпидемического менингита) имеют форму кофейных зерен, обращенных вогнутой поверхностью друг к другу.

      Стрептококки (от греч. streptos - цепоч­ка) - клетки округлой или вытянутой формы, составляющие цепочку вследствие деления клеток в одной плоскости и сохранения связи между ними в месте деления.

      Сарцины (от лат. sarcina - связка, тюк) рас­полагаются в виде пакетов из 8 и более кокков, так как они образуются при делении клетки в трех взаимно перпендикулярных плоскостях.

      Стафилококки (от греч. staphyle - виног­радная гроздь) - кокки, расположенные в виде грозди винограда в результате деления в разных плоскостях.

    Палочковидные бактерии различаются по размерам, форме концов клетки и взаим­ному расположению клеток. Длина клеток варьирует от 1,0 до 10 мкм, толщина - от 0,5 до 2,0 мкм. Палочки могут быть правильной (кишечная палочка и др.) и неправильной (коринебактерии и др.) формы, в том числе ветвящиеся, например, у актиномицетов. К наиболее мелким палочковидным бактериям относятся риккетсии.

    Концы палочек могут быть как бы обре­занными (сибиреязвенная бацилла), закруг­ленными (кишечная палочка), заостренны­ми (фузобактерии) или в виде утолщения. В последнем случае палочка похожа на булаву (коринебактерии дифтерии).

    Слегка изогнутые палочки называются виб­рионами (холерный вибрион). Большинство па­лочковидных бактерий располагается беспоря­дочно, так как после деления клетки расходятся. Если после деления клетки остаются связанны-

    ми общими фрагментами клеточной стенки и не расходятся, то они располагаются под углом друг к другу (коринебактерии дифтерии) или образуют цепочку (сибиреязвенная бацилла).

    Извитые формы - спиралевидные бактерии, например спириллы, имеющие вид штопоро-образно извитых клеток. К патогенным спи­риллам относится возбудитель содоку (болезнь укуса крыс). К извитым также относятся кам-пилобактерии и хеликобактерии, имеющие из­гибы как у крыла летящей чайки; близки к ним и такие бактерии, как спирохеты. Спирохеты - тонкие, длинные, извитые

    спиралевидной формы) бактерии, отличаю­щиеся от спирилл подвижностью, обуслов­ленной сгибательными изменениями клеток. Спирохеты состоят из наружной мембраны

    клеточной стенки), окружающей протоплаз­матический цилиндр с цитоплазматической мембраной и аксиальной нитью (аксистиль). Ахсиальная нить находится под наружной мембраной клеточной стенки (в периплазме) и как бы закручивается вокруг протоплазма-тического цилиндра спирохеты, придавая ей винтообразную форму (первичные завитки спирохет). Аксиальная нить состоит из перип-лазматических фибрилл - аналогов жгутиков бактерий и представляет собой сократитель­ный белок флагеллин. Фибриллы прикрепле­ны к концам клетки (рис. 2.2) и направлены навстречу друг другу. Другой конец фибрилл свободен. Число и расположение фибрилл варьируют у разных видов. Фибриллы учас­твуют в передвижении спирохет, придавая клеткам вращательное, сгибательное и пос­тупательное движение. При этом спирохеты образуют петли, завитки, изгибы, которые названы вторичными завитками. Спирохеты

    плохо воспринимают красители. Обычно их окрашивают по Романовскому-Гимзе или серебрением. В живом виде спирохеты ис­следуют с помощью фазово-контрастной или темнопольной микроскопии.

    Спирохеты представлены 3 родами, пато­генными для человека: Treponema , Borrelia , Leptospira .

    Трепонемы (род Treponema) имеют вид тон­ких штопорообразно закрученных нитей с 8-12 равномерными мелкими завитками. Вокруг протопласта трепонем расположе­ны 3-4 фибриллы (жгутики). В цитоплазме имеются цитоплазматические филаменты. Патогенными представителями являются Т. pallidum - возбудитель сифилиса, Т. pertenue - возбудитель тропической болезни - фрам-безии. Имеются и сапрофиты - обитатели полости рта человека, ила водоемов.

    Боррелии (род Borrelia ), в отличие от трепо­нем, более длинные, имеют по 3-8 крупных завитков и 7-20 фибрилл. К ним относятся воз­будитель возвратного тифа (В. recurrentis ) и воз­будители болезни Лайма (В. burgdorferi и др.).

    Лептоспиры (род Leptospira ) имеют завитки неглубокие и частые - в виде закрученной веревки. Концы этих спирохет изогнуты на­подобие крючков с утолщениями на концах. Образуя вторичные завитки, они приобрета­ют вид букв S или С; имеют 2 осевые нити (жгутики). Патогенный представитель L . in ­ terrogans вызывает лептоспироз при попада­нии в организм с водой или пищей, приводя к развитию кровоизлияний и желтухи.

    нием в цитоплазме, а некоторые - в яд­ре инфицированных клеток. Обитают в чле­нистоногих (вшах, блохах, клещах) которые являются их хозяевами или переносчиками. Свое название риккетсии получили по име­ни X. Т. Риккетса - американского ученого, впервые описавшего одного из возбудителей (пятнистая лихорадка Скалистых гор). Форма и размер риккетсии могут меняться (клетки неправильной формы, нитевидные) в зависи­мости от условий роста. Структура риккетсии не отличается от таковой грамотрицательных бактерий.

    Риккетсии обладают независимым от клет­ки хозяина метаболизмом, однако, возможно, они получают от клетки хозяина макроэр-гические соединения для своего размноже­ния. В мазках и тканях их окрашивают по Романовскому-Гимзе, по Маккиавелло- Здродовскому (риккетсии красного цвета, а инфицированные клетки - синего).

    У человека риккетсии вызывают эпиде­мический сыпной тиф (Rickettsia prowazekii ), клещевой риккетсиоз (R . sibirica ), пятнистую лихорадку Скалистых гор (R . rickettsii ) и дру­гие риккетсиозы.

    Элементарные тельца попадают в эпите­лиальную клетку путем эндоцитоза с форми­рованием внутриклеточной вакуоли. Внутри клеток они увеличиваются и превращаются в делящиеся ретикулярные тельца, образуя скопления в вакуолях (включения). Из ре­тикулярных телец образуются элементарные тельца, которые выходят из клеток путем эк-зоцитоза или лизиса клетки. Вышедшие из

    клетки элементарные тельца вступают в но­вый цикл, инфицируя другие клетки (рис. 16.11.1). У человека хламидии вызывают по­ражения глаз (трахома, конъюнктивит), уро-генитального тракта, легких и др.

    Актиномицеты - ветвящиеся, нитевидные или палочковидные грамположительные бак­терии. Свое название (от греч. actis - луч, mykes - гриб) они получили в связи с обра­зованием в пораженных тканях друз - гранул из плотно переплетенных нитей в виде лучей, отходящих от центра и заканчивающихся кол-бовидными утолщениями. Актиномицеты, как и грибы, образуют мицелий - нитевид­ные переплетающиеся клетки (гифы). Они формируют субстратный мицелий, обра­зующийся в результате врастания клеток в питательную среду, и воздушный, растущий на поверхности среды. Актиномицеты могут делиться путем фрагментации мицелия на клетки, похожие на палочковидные и кокко-видные бактерии. На воздушных гифах акти-номицетов образуются споры, служащие для размножения. Споры актиномицетов обычно не термостойки.

    Общую филогенетическую ветвь с актино-мицетами образуют так называемые нокарди-оподобные (нокардиоформные) актиномице­ты- собирательная группа палочковидных, неправильной формы бактерий. Их отдельные представители образуют ветвящиеся формы. К ним относят бактерии родов Corynebacterium , Mycobacterium , Nocardianjxp . Нокардиоподобные актиномицеты отличаются наличием в кле­точной стенке Сахаров арабинозы, галактозы, а также миколовых кислот и больших коли­честв жирных кислот. Миколовые кислоты и липиды клеточных стенок обуславливают кис-лотоустойчивость бактерий, в частности ми-кобактерий туберкулеза и лепры (при окраске по Цилю-Нельсену они имеют красный цвет, а некислотоустойчивые бактерии и элементы ткани, мокроты - синий цвет).

    Патогенные актиномицеты вызывают акти-номикоз, нокардии - нокардиоз, микобакте-рии - туберкулез и лепру, коринебактерии - дифтерию. Сапрофитные формы актиноми­цетов и нокардиеподобных актиномицетов широко распространены в почве, многие из них являются продуцентами антибиотиков.

    Клеточная стенка - прочная, упругая структу­ра, придающая бактерии определенную форму и вместе с подлежащей цитоплазматической мем­браной «сдерживающая» высокое осмотическое давление в бактериальной клетке. Она участвует в процессе деления клетки и транспорте мета­болитов, имеет рецепторы для бактериофагов, бактериоцинов и различных веществ. Наиболее толстая клеточная стенка у грамположительных бактерий (рис. 2.4 и 2.5). Так, если толщина клеточной стенки грамотрицательных бактерий около 15-20 нм, то у грамположительных она может достигать 50 нм и более.

    Микоплазмы - мелкие бактерии (0,15-1,0 мкм), окруженные только цитоплазматической мембра­ной. Они относятся к классу Mollicutes , содержат стеролы. Из-за отсутствия клеточной стенки мико­плазмы осмотически чувствительны. Имеют раз­нообразную форму: кокковидную, нитевидную, колбовидную. Эти формы видны при фазово-кон-трастной микроскопии чистых культур микоплазм. На плотной питательной среде микоплазмы обра­зуют колонии, напоминающие яичницу-глазунью: центральная непрозрачная часть, погруженная в среду, и просвечивающая периферия в виде круга.

    Микоплазмы вызывают у человека атипич­ную пневмонию (Mycoplasma pneumoniae ) и поражения мочеполового тракта (М. homi - nis и др.). Микоплазмы вызывают заболева­ния не только у животных, но и у растений. Достаточно широко распространены и непа­тогенные представители.

    2.2.2. Структура бактериальной клетки

    Структура бактерий хорошо изучена с помо­щью электронной микроскопии целых клеток и их улыратонких срезов, а также других мето­дов. Бактериальную клетку окружает оболочка, состоящая из клеточной стенки и цитоплазма­тической мембраны. Под оболочкой находит­ся протоплазма, состоящая из цитоплазмы с включениями и ядра, называемого нуклеоидом. Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили (рис. 2.3). Некоторые бактерии в неблагоприятных усло­виях способны образовывать споры.

    В клеточной стенке грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом клеточной стенки этих бактерий является многослойный пептидогликан (му-реин, мукопептид), составляющий 40-90% массы клеточной стенки. С пептидогликаном клеточной стенки грамположительных бакте­рий ковалентно связаны тейхоевые кислоты (от греч. teichos - стенка), молекулы которых представляют собой цепи из 8-50 остатков глицерола и рибитола, соединенных фосфат­ными мостиками. Форму и прочность бакте­риям придает жесткая волокнистая структура многослойного, с поперечными пептидными сшивками, пептидогликана.

    Пептидогликан представлен параллельно расположенными молекулами гликана . со­стоящего из повторяющихся остатков N-аце-тилглюкозамина и N-ацетилмурамовой кис­лоты, соединенных гликозидной связью. Эти связи разрывает лизоцим, являющийся аце-тилмурамидазой. Гликановые молекулы со­единены через N-ацетилмурамовую кислоту поперечной пептидной связью из четырех аминокислот (тетрапептида ). Отсюда и назва­ние этого полимера - пептидогликан.

    Основу пептидной связи пептидогликана гра­мотрицательных бактерий составляют тетрапеп-тиды, состоящие из чередующихся L- и D-ами-нокислот, например: L-аланин - D-глутаминовая кислота - мезо-диаминопимелиновая кислота - D-аланин. У Е. coli (грамотрицательная бактерия) пептидные цепи соединены друг с другом через D-аланин одной цепи и мезо-диаминопимели-

    новую кислоту - другой. Состав и строение пеп­тидной части пептидогликана грамотрицательных бактерий стабильны в отличие от пептидоглика­на грамположительных бактерий, аминокислоты которого могут отличаться по составу и после­довательности. Тетрапептиды пептидогликана у грамположительных бактерий соединены друг с другом полипептидными цепочками из 5 остатков

    глицина (пентаглицина). Вместо мезо-диамино-пимелиновой кислоты они часто содержат лизин. Элементы гликана (ацетилглюкозамин и аце-тилмурамовая кислота) и аминокислоты тетра-пептида (мезо-диаминопимелиновая и D-глу-таминовая кислоты, D-аланин) являются отли­чительной особенностью бактерий, поскольку отсутствуют у животных и человека.

    Способность грамположительных бактерий при окраске по Граму удерживать генциановый фиолетовый в комплексе с йодом (сине-фиоле­товая окраска бактерий) связана со свойством многослойного пептидогликана взаимодейство­вать с красителем. Кроме этого, последующая обработка мазка бактерий спиртом вызывает суживание пор в пептидогликане и тем самым задерживает краситель в клеточной стенке. Грамотрицательные бактерии после воздействия спиртом утрачивают краситель, что обусловлено меньшим количеством пептидогликана (5-10 % массы клеточной стенки); они обесцвечиваются спиртом и при обработке фуксином или сафра­нином приобретают красный цвет.

    В состав клеточной стенки грамотрица-тельных бактерий входит наружная мемб­рана, связанная посредством липопротеина с подлежащим слоем пептидогликана (рис. 2.4 и 2.6). Наружная мембрана при элект­ронной микроскопии ультратонких срезов бактерий имеет вид волнообразной трех­слойной структуры, сходной с внутренней мембраной, которую называют цитоплаз-матической. Основным компонентом этих мембран является бимолекулярный (двой­ной) слой липидов.

    Наружная мембрана является мозаичной структурой, представленной липополисахари-дами, фосфолипидами и белками. Внутренний слой ее представлен фосфолипидами, а в на­ружном слое расположен липополисахарид (ЛПС). Таким образом, наружная мембрана асимметрична. ЛПС наружной мембраны со­стоит из трех фрагментов:

      липида А - консервативной структуры, практически одинаковой у грамотрицатель-ных бактерий;

      ядра, или стержневой, коровой части (лат. core - ядро), относительно консервативной олигосахаридной структуры;

      высоковариабельной О-специфической цепи полисахарида, образованной повторя­ющимися идентичными олигосахаридными последовательностями.

    ЛПС «заякорен» в наружной мембране ли-пидом А, обуславливающим токсичность Л ПС и отождествляемым поэтому с эндотоксином. Разрушение бактерий антибиотиками при­водит к освобождению большого количества эндотоксина, что может вызвать у больного эндотоксический шок. От липида А отходит ядро, или стержневая часть ЛПС. Наиболее постоянной частью ядра ЛПС является кето-дезоксиоктоновая кислота (З-деокси-О-ман-но-2-октулосоновая кислота). О-специфи­ческая цепь, отходящая от стержневой части молекулы ЛПС, обусловливает серогруппу, серовар (разновидность бактерий, выявляе­мая с помощью иммунной сыворотки) опре­деленного штамма бактерий. Таким образом, с понятием ЛПС связаны представления об О-антигене, по которому можно дифферен­цировать бактерии. Генетические изменения могут привести к дефектам, «укорочению» ЛПС бактерий и к появлению в результате этого «шероховатых» колоний R-форм.

    Белки матрикса наружной мембраны про­низывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы с от­носительной массой до 700 Да.

    Между наружной и цитоплазматической мембраной находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы,

    нуклеазы, бета-лактамазы), а также компо­ненты транспортных систем.

    При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима, пеницил­лина, защитных факторов организма и других соединений образуются клетки с измененной (часто шаровидной) формой: протопласты - бактерии, полностью лишенные клеточной стенки; сферопласты - бактерии с частич­но сохранившейся клеточной стенкой. После удаления ингибитора клеточной стенки такие измененные бактерии могут реверсировать, т. е. приобретать полноценную клеточную стенку и восстанавливать исходную форму.

    Бактерии сферо- или протопластного ти­па, утратившие способность к синтезу пеп-тидогликана под влиянием антибиотиков или других факторов и способные размно­жаться, называются L-формами (от названия Института им. Д. Листера, где они впервые были изучены). L-формы могут возникать и в результате мутаций. Они представляют собой осмотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бактериальные фильтры. Некоторые L-формы (нестабиль­ные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, «возвращаясь» в исходную бактериальную клетку. L-формы могут образовывать многие возбудители инфекционных болезней.

    Цитоплазматическая мембр ана при электрон­ной микроскопии ультратонких срезов пред­ставляет собой трехслойную мембрану (2 тем­ных слоя толщиной по 2,5 нм каждый разделе­ны светлым - промежуточным). По структуре (см. рис. 2.5 и 2.6) она похожа на плазмалемму клеток животных и состоит из двойного слоя липидов, главным образом фосфолипидов, с внедренными поверхностными, а также интег­ральными белками, как бы пронизывающими насквозь структуру мембраны. Некоторые из них являются пермеазами, участвующими в транспорте веществ.

    Цитоплазматическая мембрана являет­ся динамической структурой с подвижными компонентами, поэтому ее представляют как мобильную текучую структуру. Она окружа­ет наружную часть цитоплазмы бактерий и участвует в регуляции осмотического давле-

    ния, транспорте веществ и энергетическом метаболизме клетки (за счет ферментов цепи переноса электронов, аденозинтрифосфатазы и др.).

    При избыточном росте (по сравнению с рос­том клеточной стенки) цитоплазматическая мембрана образует инвагинаты - впячива-ния в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами. Роль мезосом и внутрицитоплазматических мембран до конца не выяснена. Предполагают даже, что они являются артефактом, возника­ющим после приготовления (фиксации) пре­парата для электронной микроскопии. Тем не менее считают, что производные цитоплаз-матической мембраны участвуют в делении клетки, обеспечивая энергией синтез клеточ­ной стенки, принимают участие в секреции веществ, спорообразовании, т. е. в процессах с высокой затратой энергии.

    Цитоплазма занимает основной объем бак­териальной клетки и состоит из растворимых белков, рибонуклеиновых кислот, включе­ний и многочисленных мелких гранул - ри­босом, ответственных за синтез (трансля­цию) белков.

    Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от SOS-рибосом, характерных для эукариотических клеток. Поэтому некото­рые антибиотики, связываясь с рибосомами бактерий, подавляют синтез бактериального белка, не влияя на синтез белка эукарио­тических клеток. Рибосомы бактерий могут диссоциировать на две субъединицы - 50S и 30S. Рибосомные РНК (рРНК) - консер­вативные элементы бактерий («молекуляр­ные часы» эволюции). 16S рРНК входит в состав малой субъединицы рибосом, a 23S рРНК - в состав большой субъединицы ри­босом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.

    В цитоплазме имеются различные включе­ния в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они накапливаются при избытке питательных веществ в окружающей среде и

    зыполняют роль запасных веществ для пита­ния и энергетических потребностей.

    Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Толуидиновым синим или метиленовым голу­бым волютин окрашивается в красно-фиоле­товый цвет, а цитоплазма бактерии - в синий. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде ин­тенсивно прокрашивающихся полюсов клетки. Метахроматическое окрашивание волютина связано с высоким содержанием полимеризо-ванного неорганического полифосфата. При электронной микроскопии они имеют вид элек­тронно-плотных гранул размером 0,1-1,0 мкм.

    Нуклеоид - эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Ядро бактерий, в отличие от эукариот, не име­ет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, пред-ставленная замкнутой в кольцо молекулой ДHK При нарушении деления в ней может сходиться 4 и более хромосом. Нуклеоид выявляется в световом микроскопе после ок-раски специфическими для ДНК методами: по Фельгену или по Романовскому-Гимзе. На электронограммах ультратонких срезов бактерий нуклеоид имеет вид светлых зон с фибриллярными, нитевидными структурами ДHK, связанной определенными участками с

    цитоплазматической мембраной или мезосо-

    мой, участвующими в репликации хромосо­мы (см. рис. 2.5 и 2.6).

    Кроме нуклеоида, представленного одной

    хромосомой, в бактериальной клетке имеются

    вне хромосомные факторы наследственности -

    плазмиды (см. разд. 5.1.2.), представляющие

    собой ковалентно замкнутые кольца ДНК.

    Капсула, микрокапсула, слизь . Капсула -

    слизистая структура толщиной более 0,2 мкм, прочно связанная с клеточной стенкой бак-терий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпе-чатках из патологического материала. В чис-тых культурах бактерий капсула образуется

    реже. Она выявляется при специальных ме­тодах окраски мазка по Бурри-Гинсу, созда­ющих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы.

    Капсула состоит из полисахаридов (эк-зополисахаридов), иногда из полипепти­дов; например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, включает большое количество воды. Она препятству­ет фагоцитозу бактерий. Капсула антиген-на: антитела против капсулы вызывают ее увеличение (реакция набухан ия капсу лы).

    Многие бактерии образуют микрокапсулу - слизистое образование толщиной менее 0,2 мкм, выявляемое лишь при электронной микроско­пии. От капсулы следует отличать слизь - муко-идные экзополисахариды, не имеющие четких внешних границ. Слизь растворима в воде.

    Мукоидные экзополисахариды характерны для мукоидных штаммов синегнойной палоч­ки, часто встречающихся в мокроте больных с кистозным фиброзом. Бактериальные эк­зополисахариды участвуют в адгезии (прили­пании к субстратам); их еще называют глико-

    каликсом. Кроме синтеза экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В резуль­тате этого образуются декстраны и леваны.

    Капсула и слизь предохраняют бактерии от повреждений, высыхания, так как, явля­ясь гидрофильными, хорошо связывают воду, препятствуют действию защитных факторов макроорганизма и бактериофагов.

    Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоп-лазматической мембраны, имеют большую длину, чем сама клетка (рис. 2.7). Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они со­стоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков - у грамположительных и 2 пары - у грамотри-цательных бактерий). Дисками жгутики при­креплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем - ротором, вра­щающим жгутик. В качестве источника энер­гии используется разность протонных по­тенциалов на цитоплазматической мембране. Механизм вращения обеспечивает протонная АТФ-синтетаза. Скорость вращения жгути­ка может достигать 100 об/с. При наличии у бактерии нескольких жгутиков они начинают синхронно вращаться, сплетаясь в единый пу­чок, образующий своеобразный пропеллер.

    Жгутики состоят из белка - флагеллина (от. flagellum - жгутик), являющегося антигеном - так называемый Н-антиген. Субъединицы флагеллина закручены в виде спирали.

    Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного виб­риона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих), у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

    Жгутики выявляют с помощью электронной микроскопии препаратов, напыленных тяжелы­ми металлами, или в световом микроскопе после обработки специальными методами, основанны­ми на протравливании и адсорбции различных

    веществ, приводящих к увеличению толщины жгутиков (например, после серебрения).

    Ворсинки, или пили (фимбрии) - нитевид­ные образования (рис. 2.7), более тонкие и короткие (3+10 нм х 0,3+10 мкм), чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина. Они обладают антигенной активностью. Различают пили, ответственные за адгезию, т. е. за прикрепление бактерий к поражаемой клетке, а также пили, ответствен­ные за питание, водно-солевой обмен, и поло­вые (F-пили), или конъюгационные, пили.

    Обычно пили многочисленны - несколько сотен на клетку. Однако половых пил ей обыч­но бывает 1-3 на клетку: они образуются так называемыми «мужскими» клетками-донора­ми, содержащими трансмиссивные плазмиды (F -, R -, Соl-плазмиды). Отличительной осо­бенностью половых пилей является их взаи­модействие с особыми «мужскими» сферичес­кими бактериофагами, которые интенсивно адсорбируются на половых пилях (рис. 2.7).

    Споры - своеобразная форма покоящихся бактерий с грамположительным типом строе­ния клеточной стенки (рис. 2.8).

    Споры образуются при неблагоприятных условиях существования бактерий (высуши­вание, дефицит питательных веществ и др.). Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не являет- i ся способом размножения, как у грибов.

    Спорообразуюшие бактерии рода Bacillus , у которых размер споры не превыша­ет диаметр клетки, называются бациллами. Спорообразующие бактерии, у которых раз­мер споры превышает диаметр клетки, отчего они принимают форму веретена, называют­ся клостридиями, например бактерии рода Clostridium (лат. Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нельсена з красный, а вегетативная клетка - в синий.

    Спорообразование, форма и расположение спор в клетке (вегетативной) являются ви­довым свойством бактерий, что позволяет отличать их друг от друга. Форма спор может быть овальной, шаровидной; расположение в клетке - терминальное, т. е. на конце палоч­ки (у возбудителя столбняка), субтерминаль­ное - ближе к концу палочки (у возбудителей ботулизма, газовой гангрены) и центральное у сибиреязвенной бациллы).

    Процесс спорообразованя (споруляция) прохо­дит ряд стадий, в течение которых часть цитоп­лазмы и хромосома бактериальной вегетатив­ной клетки отделяются, окружаясь врастающей цитоплазматической мембраной, - образуется проспора. Проспору окружают две цитоплазма-тические мембраны, между которыми формиру­ется толстый измененный пептидогликановый слой кортекса (коры). Изнутри он соприкаса­ется с клеточной стенкой споры, а снаружи - с внутренней оболочкой споры. Наружная обо­лочка споры образована вегетативной клеткой. Споры некоторых бактерий имеют дополни­тельный покров - экзоспориум. Таким образом формируется многослойная плохо проницаемая оболочка. Спорообразование сопровождается интенсивным потреблением проспорой, а затем и формирующейся оболочкой споры дипиколи-новой кислоты и ионов кальция. Спора приоб­ретает термоустойчивость, которую связывают с наличием в ней дипиколината кальция.

    Спора долго может сохраняться из-за нали­чия многослойную оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизма. В почве, например, возбудители сибирской язвы и столбняка мо­гут сохраняться десятки лет.

    В благоприятных условиях споры прораста­ют, проходя три последовательные стадии: ак-

    тивацию, инициацию, вырастание. При этом из одной споры образуется одна бактерия. Активация- это готовность к прорастанию. При температуре 60-80 °С спора активируется для прорастания. Инициация прорастания длит­ся несколько минут. Стадия вырастания характе­ризуется быстрым ростом, сопровождающимся разрушением оболочки и выходом проростка.

    ТЕМА: «Введение. Классификация и морфологические свойства микроорганизмов. Физиология микроорганизмов и распространение их во внешней среде»

    План изложения:

    1. Микробиология и её отрасли

    2. Задачи медицинской микробиологии

    3. Основоположники микробиологии

    4. Классификация микроорганизмов

    5. Отличительные особенности эукариот, прокариот, вирусов

    6. Морфология бактерий

    7. Питание микроорганизмов

    8. Особенности метаболизма микробных клеток

    9. Типы дыхания микроорганизмов

    10. Рост и размножение микроорганизмов

    11. Распространение микроорганизмов в природе

    12. Нормальная микрофлора человека и её значение

    Микробиология (mikros – малый, bios – жизнь, logos – учение) – наука о микроорганизмах, их строении и жизнедеятельности, наследственности и изменчивости, значении в природе и народном хозяйстве.

    По целевой направленности и решению практических задач различают общую, техническую (промышленную), медицинскую, ветеринарную, санитарную, радиационную и космическую микробиологию. При этом общая микробиология изучает систематику, структурную организацию, химический состав, ферментные системы, культивирование и генетику микроорганизмов; техническая – использование микроорганизмов в производстве антибиотиков, ферментов, витаминов, стероидов, аминокислот и прочих биологически активных веществ, молочных и других продуктов, чая, кофе, какао, обработке каучука, хлопка, шелка, дублении кож и др.; медицинская и ветеринарная – закономерности жизнедеятельности патогенных для человека и животных микроорганизмов, механизмы инфекции и иммунитета, методы специфической профилактики и терапии инфекционных заболеваний; санитарная – микробную обсемененность окружающей среды, в частности выживаемость на различных объектах санитарно-показательных и патогенных микробов, их влияние на здоровье человека и естественные процессы; радиационная и космическая – влияние ионизирующих излучений и космических частиц на микроорганизмы.

    В становлении микробиологии как науки выделяют два этапа –описательный (морфологический) и физиологический .

    Морфологический период берет начало от первых наблюдений голландского естествоиспытателя Антония ван Левенгука (1632-1723), который, изготовив микроскоп, увеличивающий объекты до 200 раз, сумел увидеть и описать все основные формы бактерий и простейших.

    Разрозненные факты описательного периода микробиологии были обобщены и приумножены основателем научной микробиологии Луи Пастером (1822-1895), с именем которого связано развитие второго, физиологического периода микробиологии и эпохальные открытия сущности брожения (1857), невозможности самопроизвольного зарождения (1860), природы порчи пива и вина (1865), болезней шелковичных червей (1868), микробной обусловленности и заразности инфекционных болезней (1881), методов изготовления вакцин и способов предохранения от куриной холеры, сибирской язвы и бешенства (1882-1885).

    Большую роль в истории развития микробиологии сыграли труды Роберта Коха (1843-1910), который разработал метод выделения чистых культур микроорганизмов на плотных питательных средах, в частности ввел в практику агар-агар, желатин, свернутую сыворотку, кусочки овощей, предложил методы окраски бактерий анилиновыми красителями, усовершенствовал микроскоп, использовал микрофотографию. Благодаря усовершенствованию техники и методики микробиологических исследований Кох установил природу сибирской язвы, туберкулеза, холеры.

    Основоположником современной вирусологии является русский ученый, профессор ботаники Д.И. Ивановский (1864-1920), установивший в 1892 г., что мозаичная болезнь табака (МБТ) вызывается инфекционным агентом, фильтрующимся через фарфоровые свечи Шамберлана с такими мелкими порами, которые задерживали известные в то время микроорганизмы.

    Основоположниками иммунологии, зародившейся в недрах микробиологии, являются лауреаты Нобелевской премии И.И. Мечников (1845-1916) и П. Эрлих (1854-1915), разработавшие клеточную и гуморальную теории иммунитета.

    Главные задачи медицинской микробиологии – профилактика и лечение инфекционных болезней. Выдающиеся открытия в микробиологии позволили за полстолетия повсеместно ликвидировать натуральную оспу, снизить до спорадических (единичных) случаев широко распространенные ранее чуму, туляремию, сыпной и возвратные тифы, мягкий шанкр, дифтерию, коклюш, полиомиелит, трахому, бешенство, столбняк, корь, лейшманиоз городского типа. Большие успехи достигнуты в профилактике клещевого энцефалита, клещевого возвратного тифа, бруцеллеза, но по-прежнему трудна борьба с заболеваемостью острыми кишечными инфекциями, гриппом, туберкулезом, другими острыми инфекциями дыхательных путей, вирусными гепатитами. Разработаны эффективные меры пресечения экзотических (завозных) и карантинных инфекций, в частности желтой лихорадки. Проводятся интенсивные поиски вакцинопрофилактики и способов лечения СПИДа.

    Современная систематика, или таксономия (taxis – расположение, порядок + nomos – закон) микроорганизмов построена на общепринятой в биологии иерархической схеме, объединяющей в единое целое филогенетически родственные соподчиненные группы или таксономические категории, высшими из которых являются царства, подцарства, отделы (типы) → классы → отряды → семейства →трибы (группы) → роды →виды.

    Основным таксономом является вид.

    Вид – совокупность происходящей от одного предка скрещивающейся популяции, обладающей общим генофондом, экологическим единством и, если исключить некоторое виды бактерий, – репродуктивной изоляцией, т.е. между особями одного вида происходит свободный обмен генами, а между особями разных видов обмен ими невозможен или затруднен.

    Клон – генетически однородная чистая культура микроорганизмов, происходящая из одной клетки.

    Штамм – культура определенного вида микроорганизмов, выделенная из окружающей среды, патологического материала, музея.

    В зависимости от штаммовых особенностей морфологии микроба, культуральных, биохимических, серологических (антигенных) свойств, его чувствительности к фагу и антибиотикам, степени патогенности различают несколько инфраподвидовых категорий: морфовары, культивары (биовары), хемовары, серовары, фаговары, резистенсвары, патовары и подвиды, отличающиеся друг от друга двумя-тремя особо важными признаками.

    Каждый вид микроорганизмов, исключая вирусы, в соответсвии с правилами биноминальной (двойной, бинарной) номенклатуры обозначается двумя латинскими словами, например Mycobacterium tuberculosis, Mycoplasma pneumoniae. Первое слово, начинающееся с заглавной буквы, указывает на родовую принадлежность вида, второе – конкретно определяет вид.

    Эукариоты , т.е. клетки с подлинными ядрами, подобны клеткам растений и животных. Они имеют поверхностную мембрану и внутриклеточную систему элементарных мембран, составляющих эндоплазматический ретикулум и комплекс Гольджи. В цитоплазме эукариот содержатся оформленное ядро (ядра), митохондрии, рибосомы и ряд других органелл. Клеточная стенка эукариот имеет разный характер строения и степень выраженности, которые нередко зависят от стадии или фазы развития. Размножаются простые эукариоты половым и бесполым путем.

    Прокариоты – клетки, не имеющие отграниченного ядра, внутриклеточных систем элементарных мембран и митохондрий, а некоторые – лишены также клеточной стенки. Размножаются амитотически: простым поперечным делением или почкованием.

    Виды прокариот идентифицируют по определению Д. Берги, изданному в 1994 г., в котором по структуре клеточной оболочки и отношению к окраске по методу Грама выделено четыре основных отдела (главных таксона): 1 – Gracilicutes (тонкостенные, окрашивающиеся грамотрицательно в розовый цвет), 2 – Firmicutes (толстостенные, окрашивающиеся грамположительно в фиолетовый цвет), 3 – Tenericutes (лишенные оболочек) и 4 – Mendosicutes (с дефектными оболочками), как правило, окрашивающиеся грамотрицательно.

    Морфология бактерий

    Бактерии – это одноклеточные организмы растительной природы лишенные хлорофилла и размножающиеся простым делением. К морфологическим свойствам бактерий относят форму, размеры, расположение, подвижность, споро- и капсулообразование. Размеры микроорганизмов колеблются от 0,4 до 10 мкм. Различают 3 формы микроорганизмов:

    1 – шаровидные – кокки. В зависимости от плоскости деления и расположения клеток после деления кокки делят на: а – микрококки – деление и расположение беспорядочно; б – диплококки – деление в одной плоскости, расположение по 2; в – стрептококки – деление в одной плоскости, расположение цепочкой; г – тетракокки – деление в двух взаимноперпендикулярных плоскостях, расположение по 4; д – сарцины – деление в трех взаимноперпендикулярных плоскостях, расположение в виде пакетов по 8-16 штук; е – стафилококки – располагаются в виде гроздьев винограда.

    2 – цилиндрическая или палочковидная форма – по способности образовывать споры палочковидные микроорганизмы делят на бациллы (образующие споры) и бактерии (не образующие споры). В зависимости от плоскости деления и расположения клеток после деления палочковидные микроорганизмы делят на: а – диплобактерии и диплобациллы – делятся в одной плоскости и располагаются по 2; б – стрептобактерии и стрептобациллы – делятся в одной плоскости и располагаются цепочкой; в – большинство палочковидных форм делятся хаотично и располагается по одному.

    3 – извитые . Делят на: а – вибрионы – напоминают запятую или полумесяц; б – спириллы и спирохеты – имеют винтообразное строение.

    Строение бактериальной клетки

    Бактериальная клетка имеет оболочку, состоящую из трех слоев: слизистый слой, клеточная стенка, цитоплазматическая мембрана. Если слизистый слой достаточно толст, прочен и концентрируется вокруг микробной клетки, то он называется капсулой. Микрокапсула имеется у большинства микроорганизмов, а макрокапсула – только у пневмококка, клебсиелл и возбудителей сибирской язвы. При культивировании на питательных средах способность образовывать капсулу обычно утрачивается (кроме клебсиелл), капсула защищает микроорганизм в макроорганизме от действия фагоцитоза и гуморальных факторов.

    Функции оболочки: формообразующая (за счет клеточной стенки), обеспечивает прочность, эластичность, гибкость, предохраняет от осмотического лизиса (цитоплазматическая мембрана), за счет избирательной проницаемости обеспечивает питание и выделение продуктов обмена, является местом биосинтеза некоторых составных частей клетки, участвует в делении.

    Цитоплазма представляет собой прозрачное, слегка вязкое вещество жидкой консистенции, коллоидное состояние обеспечивается за счет содержания воды, белков, жиров, углеводов, минеральных веществ.

    Аналогом ядра в бактериальной клетке является нуклеотид, у которого отсутствует дифференцированная ядерная мембрана.

    В цитоплазме располагаются рибосомы, ответственные за синтез белка, и мезосомы, в которых протекают окислительно-восстановительные процессы. Включения представлены глыбками крахмала, гликогена, зернами серы, волютина, капельками жира и выполняют роль запаса питательных веществ.

    Подвижные бактерии имеют органеллы движения – жгутики, начинающиеся от базального тельца и состоящие из белка флагеллина способного к самосокращению. По количеству и месту нахождения жгутиков подвижные бактерии делят на:

    1. Монотрихи – один жгутик расположен на одном полюсе

    2. Амфитрихи – по пучку жгутиков или по одному жгутику на 2 полюсах

    3. Лофотрихи – пучок жгутиков на 1 полюсе

    4. Перитрихи – жгутики расположены по всей поверхности

    Для палочковидных микроорганизмов характерно спорообразование. Споры у микроорганизмов – это способ сохранения вида, и образуются они при попадании микроорганизмов в неблагоприятные условия внешней среды. Процесс спорообразования начинается с уплотнения цитоплазмы вокруг нуклеотида, после чего вокруг проспоры образуется многослойная оболочка и обменные процессы идут на самом низком уровне. В таком состоянии микроорганизмы сохраняют жизнеспособность в течение 40-50 лет. Наступление благоприятных условий способствует прорастанию спор в вегетативные формы, вызывающие заболевание при попадании в организм человека.

    Физиология микроорганизмов

    Питание – процесс, в ходе которого бактериальная клетка получает из окружающей среды компоненты, необходимые для построения ее биополимеров.

    По источнику получения углерода:

    a) Аутотрофы (питающийся сам) или литотрофы – единственный источник углерода – CO 2 , они способны из простых неорганических соединений синтезировать сложные органические

    b) Гетеротрофы (питающийся за счет других) или органотрофы – добывают углерод из глюкозы, многоатомных спиртов, реже углеводородов, аминокислот, органических кислот, они нуждаются в поступлении готовых органических соединений

    Метаболизм микроорганизмов состоит из:

    – Ассимиляции (анаболизм) – увеличивает сложность соединений, т.е. обеспечивает синтез веществ с затратой энергии

    – Диссимиляция (катаболизм) – расщепление сложных соединений на простые, которые потом используются для последующего синтеза, а часть выделяется во внешнюю среду

    Особенности метаболизма бактерий:

    1. Преобладание процессов диссимиляции над процессами ассимиляции

    2. Высокая интенсивность метаболизма

    3. Очень широкий спектр потребляемых бактериями веществ

    4. Очень широкий набор ферментов

    Дыхание – биологический процесс окисления различных органических веществ, при котором происходит перенос протонов и электронов от субстрата (донора) к кислороду (акцептору) и образование молекул АТФ.

    Органеллы дыхания у бактерий – мезосомы, содержащие специальные дыхательные ферменты типа цитохромоксидаз.

    По типу дыхания бактерии делят на:

    Облигатные аэробы – они способны получать энергию только путем дыхания и нуждаются в О 2 как акцепторе протонов и электронов в окислительно-восстановительных процессах.

    Облигатные анаэробы – способны расти только в среде, лишенной О 2 (для них О 2 токсичен). Для них как тип окислительно-восстановительных процессов характерна ферментация, при которой происходит перенос протонов и электронов от субстрата-донора к субстрату-акцептору.

    Факультативные анаэробы – способны расти как при наличии О 2 , так и в отсутствии его.

    Среди них различают:

    a) Аэротолерантные – могут расти в присутствии атмосферного О 2, но не способные его использовать, т.к. получают энергию исключительно с помощью брожения (молочнокислые)

    b) Факультативно-анаэробные – которые в отсутствие О 2 способны перестраиваться на брожение (энтеробактерии)

    Рост – увеличение размеров отдельной особи (растут несколько минут)

    Размножение – повышение числа особей популяции, способность к самовоспроизведению. Чаще всего бактерии размножаются путем простого поперечного деления и почкования: удваивается ДНК и каждая дочерняя клетка получает копию материнской ДНК, после чего между ними образуется перегородка. Процесс размножения микробных клеток идет довольно интенсивно. Деление бывает: изоморфное – дочерние клетки одинаковой величины; гетероморфное – дочерние клетки разной величины.

    Распространение микроорганизмов в природе

    Почва – является основной средой обитания многих микроорганизмов. Содержание микроорганизмов в почве – миллионы и миллиарды в 1 грамме. Состав и количество микроорганизмов зависят от влажности, температуры, содержания питательных веществ, кислотности почвы.

    Плодородные почвы содержат больше микроорганизмов, чем глинистые и почвы пустынь. Верхний слой почвы (1-2 мм) содержит меньше микроорганизмов, т.к. солнечные лучи и высыхание вызывают их гибель, а на глубине 10-20 см – микроорганизмов больше всего. Чем глубже, тем количество микроорганизмов в почве меньше. Наиболее богаты микробами 15 см верхнего слоя почвы.

    Видовой состав почвенной микрофлоры прежде всего зависит от вида почвы. В песчаных почвах преобладают аэробные микроорганизмы, а в глинистых – анаэробные. В их составе, как правило, обнаруживаются сапрофитические виды спорообразующих бацилл и клостридий, актиномицеты, грибы, микоплазмы, сине-зеленые водоросли, простейшие.

    Микроорганизмы почвы осуществляют разложение трупов человека, животных и растительных остатков, самоочищение почвы от нечистот и отбросов, биологический круговорот веществ, изменяют структуру и химический состав почвы. Патогенные микроорганизмы попадают в почву с выделениями человека и животных.

    Существует 3 группы микроорганизмов, для которых:

    I. Почва – место обитания: возбудитель ботулизма, грибы.

    II. Почва – вторичный резервуар, где они сохраняются длительное время: это чаще всего споровые бациллы – возбудитель сибирской язвы

    III. Почва – среда, где микроорганизмы сохраняются от нескольких часов до нескольких месяцев: опасность передачи этих заболеваний невелика, но она увеличивается в военное время – возбудители столбняка и газовой гангрены

    Воздух . Количество постоянно находящихся микрооргаизмов атмосферного воздуха сравнительно невелико. Больше всего их содержиться в околоземных слоях атмосферы. По мере удаления от земной поверхности в экологически благоприятных регионах воздух становится чище.

    Количество микроорганизмов зависит от высоты и отдаленности от населенных пунктов. Здесь они только сохраняются некоторое время, а затем происходит их гибель за счет солнечной радиации, температурного воздействия, отсутствия питательных веществ.

    Зимой количество микроорганизмов в воздухе открытых пространств меньше, чем летом. В воздухе закрытых помещений количество микроорганизмов зимой больше, чем летом. Микроорганизмы попадают в воздух от больных через дыхательные пути, с пылью, от загрязненных предметов, почвы.

    В атмосферном воздухе видовой состав микрофлоры непрерывно меняется. В воздухе могут быть: стафилакокки, стрептококки, возбудители дифтерии, туберкулеза, вирусы кори, гриппа. Поэтому возможен воздушно-капельный и воздушно-пылевой пути передачи заразного начала. И для их предотвращения используют маски, проветривание, влажную уборку.

    Вода. Вода – естественная среда обитания многих микроорганизмов. Количественные соотношения водных микроорганизмов в открытых водоемах колеблются в широких пределах, что зависит от типа водоема, сезона, степени его загрязнения. Особенно много микроорганизмов вблизи населенных пунктов, где вода загрязняется стоками хозяйственных нечистот. Чистая вода – артезианские скважины и родники. Для воды характерно ее самоочищение: гибель под действием солнечного света, разбавление чистой водой, за счет антагонизма микроорганизмов и других факторов.

    Видовой состав микрофлоры воды мало чем отличается от почвенной. Известны водные эпидемии: при холере, брюшном тиф, дизентерии, туляремии, лептоспирозах.

    Нормальная микрофлора тела человека. Микрофлора, выделенная от здорового человека, отличается видовым разнообразием. При этом одни виды микроорганизмов обитают в организме человека постоянно и составляют нормальную группу микрофлоры, другие – обнаруживаются периодически, попадая в организм человека от случая к случаю.

    Дыхательные пути : постоянная микрофлора содержится только в полости носа, носоглотки и зева. В ее составе обнаруживаются грамотрицательные катаральные микрококки и фарингиальные диплококки, дифтероиды, капсульные грамотрицательные палочки, актиномицеты, стафилококки, пептококки, протей, аденовирусы. Конечные ветви бронхов и легочные альвеолы стерильны.

    Рот : специфические виды микроорганизмов в полости рта ребенка появляются через 207 суток. Среди них 30-60% составляют стрептококки. Также заселяется полость рта микоплазмами, дрожжеподобными грибами, сапрофитическими видами трепонем, боррелий и лептоспир, энтамеб, трихомонад.

    ЖКТ : тонкий кишечник не содержит специфических видов микробов, а случайные – редки и немногочислены. Толстый кишечник заселяется транзиторными микроорганизмами с первого дня жизни. Превалируют в нем облигатные анаэробы, в частности – бифидобактерии, лактобациллы, бактероиды и эубактерии – 90-95%. 5-10% – факультативные анаэробные бактерии: кишечные палочки и молочнокислые стрептококки. Десятые-сотые доли процента кишечного биоценоза приходятся на остаточную микрофлору: клостридии, энтерококки, протей, кандида и пр.

    Микрофлора кожных покровов и конъюнктивы глаза : на коже и конъюнктиве глаза обитают микро- и макрококки, коринеформы, плесневые дрожжи и дрожжеподобные организмы, микоплазмы, условно-патогенные стафилококки. Другие виды микробов, актиномицеты, грибы, клостридии, эшерихии, золотистые стафилококки, обсеменяют кожу и конъюнктиву в условиях сильной запыленности воздуха помещений, загрязнения предметов обихода, прямого контакта с почвой. При этом на коже количество микроорганизмов во много раз больше, чем на площади глаза, что объясняется высоким содержанием в секрете конъюнктивы микробоцидных веществ.

    Микрофлора мочеполовых путей : мочевыводящие пути здоровых людей стерильны, и лишь в передней части мочеиспускательного канала встречаются грамотрицательные непатогенные бактерии, коринеформы, микрококки, стафилококки и другие. На наружных половых органах обитают микобактерии смегмы и микоплазмы. Влагалище со 2-5 дня жизни новорожденного на многие годы заселяется непатогенной кокковой микрофлорой, которая при половом созревании заменяется молочнокислыми бактериями.

    Вопросы для самоконтроля:

    1. Что является предметом изучения микробиологии?

    2. Что означает дословный перевод с греческого термина «микробиология»?

    3. Какие отрасли микробиологии Вы знаете?

    4. Изучением каких вопросов занимается общая микробиология?

    5. Какие группы микроорганизмов изучает ветеринарная микробиология?

    6. Какие группы микроорганизмов изучает производственная микробиология?

    7. Что изучает медицинская микробиология и каковы ее задачи?

    8. Какие основные этапы развития микробиологии Вы знаете?

    9. Кто является основоположником морфологического периода микробиологии?

    10. Основоположником какого периода развития микробиологии является Луи Пастер?

    11. Каков вклад Луи Пастера в развитие микробиологии?

    12. Какой ученый положил начало развитию иммунологического периода микробиологии?

    13. Каковы современные принципы классификации микроорганизмов?

    14. Назовите микроорганизмы, относящиеся к эукариотам.

    15. Какие микроорганизмы относят к прокариотам?

    16. Перечислите основные признаки, отличающие строение бактериальной клетки от строения клетки животных и растений.

    17. Какие 3 формы микроорганизмов Вы знаете?

    18. Из каких слоев состоит оболочка микробной клетки?

    19. Какова функция жгутиков у микроорганизмов?

    20. Какую функцию выполняют ворсинки?

    21. В чем отличие спорообразования у грибов и бактерий?

    22. Как могут располагаться споры у бактерий?

    23. Какова форма спор?

    24. На какие 2 группы делят микроорганизмы по типу питания?

    25. На какие 2 группы делят гетеротрофы в зависимости от источника получения готовых органических соединений?

    26. Что такое анаболизм?

    27. Что такое катаболизм?

    28. Как классифицируются микроорганизмы по типу дыхания?

    29. Что такое рост микроорганизмов?

    30. Что такое размножение микроорганизмов?

    31. Какие микроорганизмы содержатся в почве?

    32. Каков видовой состав микрофлоры атмосферного воздуха?

    33. Какими микроорганизмами представлена микрофлора воды?

    34. Какова нормальная микрофлора тела человека и её роль?

    2.1. Систематика и номенклатура микробов

    Мир микробов можно разделить на клеточные и неклеточные формы. Клеточные формы микробов представлены бактериями, грибами и простейшими. Их можно называть микроорганизмами. Неклеточные формы представлены вирусами, вироидами и прионами.

    Новая классификация клеточных микробов включает следующие таксономические единицы: домены, царства, типы, классы, порядки, семейства, роды, виды. В основу классификации микроорганизмов положены их генетическое родство, а также морфологические, физиологические, антигенные и молекулярнобиологические свойства.

    Вирусы нередко рассматриваются не как организмы, а как автономные генетические структуры, поэтому они будут рассмотрены отдельно.

    Клеточные формы микробов разделены на три домена. Домены Bacteria и Archaebacteria включают микробы с прокариотическим типом строения клетки. Представители домена Eukarya являются эукариотами. Он состоит из 4 царств:

    Царства грибов (Fungi, Eumycota);

    царства простейших (Protozoa);

    царства Chromista (хромовики);

    Микробов с неуточненным таксономическим положением (Microspora, микроспоридии).

    Различия в организации прокариотической и эукариотической клеток представлены в табл. 2.1.

    Таблица 2.1. Признаки прокариотической и эукариотической клетки

    2.2. Классификация и морфология бактерий

    Термин «бактерия» происходит от слова bacterion, что означает палочка. Бактерии относятся к прокариотам. Их разделяют на два домена: Bacteria и Archaebacteria. Бактерии, входящие в домен Archaebacteria, представляют одну из древнейших форм жизни. Они имеют особенности строения клеточной стенки (у них отсутствует пептидогликан) и рибосомальной РНК. Среди них отсутствуют возбудители инфекционных заболеваний.

    Внутри домена бактерии подразделяются на следующие таксономические категории: класс, тип, порядок, семейство, род, вид. Одной из основных таксономических категорий является вид (species). Вид - это совокупность особей, имеющих единое происхождение и генотип, объединенные по близким свойствам, отличающим их от других представителей рода. Название вида соответствует бинарной номенклатуре, т.е. состоит из двух слов. Например, возбудитель дифтерии пишется как Corynebacterium diphtheriae. Первое слово - название рода и пишется с прописной буквы, второе слово обозначает вид и пишется со строчной буквы.

    При повторном упоминании вида родовое название сокращается до начальной буквы, например C. diphtheriae.

    Совокупность однородных микроорганизмов, выделенных на питательной среде, характеризующихся сходными морфологическими, тинкториальными (отношение к красителям), культуральными, биохимическими и антигенными свойствами, называется чистой культурой. Чистая культура микроорганизмов, выделенных из определенного источника и отличающихся от других представителей вида, называется штаммом. Близким к понятию «штамм» является понятие «клон». Клон представляет собой совокупность потомков, выращенных из единственной микробной клетки.

    Для обозначения некоторых совокупностей микроорганизмов, отличающихся по тем или иным свойствам, употребляется суффикс «вар» (разновидность), поэтому микроорганизмы в зависимости от характера различий обозначают как морфовары (отличие по морфологии), резистентовары (отличие по устойчивости, например, к антибиотикам), серовары (отличие по антигенам), фаговары (отличие по чувствительности к бактериофагам), биовары (отличие по биологическим свойствам), хемовары (отличие по биохимическим свойствам) и т.д.

    Раньше основу классификации бактерий составляла особенность строения клеточной стенки. Подразделение бактерий по особенностям строения клеточной стенки связано с возможной вариабельностью их окраски в тот или иной цвет по методу Грама. Согласно этому методу, предложенному в 1884 г. датским ученым Х. Грамом, в зависимости от результатов окраски бактерии делятся на грамположительные, окрашиваемые в сине-фиолетовый цвет, и грамотрицательные, окрашиваемые в красный цвет.

    В настоящее время основу классификации составляет степень генетического родства, основанная на изучении строения генома рибосомных РНК (рРНК) (см. главу 5), определении процентного содержания в геноме гуанинцитозиновых пар (ГЦ-пары), построении рестрикционной карты генома, изучении степени гибридизации. Также учитываются и фенотипические показатели: отношение к окраске по Граму, морфологические, культуральные и биохимические свойства, антигенная структура.

    Домен Bacteria включает 23 типа, из которых медицинское значение имеют нижеизложенные.

    Большинство грамотрицательных бактерий объединены в тип Proteobacteria (по имени греческого бога Proteus, способного принимать различные облики). Тип Proteobacteria подразделен на 5 классов:

    Класс Alphaproteobacteria (роды Rickettsia, Orientia, Erlichia, Bartonella, Brucella);

    класс Betaproteobacteria (роды Вordetellа, Burholderia, Neisseria, Spirillum);

    Класс Gammaproteobacteria (представители семейства Enterobacteriaceae, роды Francisella, Legionella, Coxiella, Pseudomonas, Vibrio);

    Класс Deltaproteobacteria (род Bilophila);

    Класс Epsilonproteobacteria (роды Campilobacter, Helicobacter). Грамотрицательные бактерии входят также в следующие типы:

    тип Chlamydiae (роды Chlamydia, Chlamydophila), тип Spirochaetes (роды Spirocheta, Borrelia, Treponema, Leptospira); тип Bacteroides (роды Bacteroides, Prevotella, Porphyromonas).

    Грамположительные бактерии входят в следующие типы:

    Тип Firmicutes включает класс Clostridium (роды Clostridium, Peptococcus), класс Bacilli (Listeria, Staphylococcus, Lactobacillus, Streptococcus) и класс Mollicutes (роды Mycoplasma, Ureaplasma), которые являются бактериями, не имеющими клеточную стенку;

    тип Actinobacteria (роды Actinomyces, Micrococcus, Corynebacterium, Mycobacterium, Gardnerella, Bifidobacterium, Propionibacterium, Mobiluncus).

    2.2.1. Морфологические формы бактерий

    Различают несколько основных форм бактерий: кокковидные, палочковидные, извитые и ветвящиеся (рис. 2.1).

    Сферические формы, или кокки - шаровидные бактерии размером 0,5-1 мкм, которые по взаимному расположению делятся на микрококки, диплококки, стрептококки, тетракокки, сарцины и стафилококки.

    Микрококки (от греч. micros - малый) - отдельно расположенные клетки.

    Диплококки (от греч. diploos - двойной), или парные кокки, располагаются парами (пневмококк, гонококк, менингококк), так как клетки после деления не расходятся. Пневмококк (возбудитель пневмонии) имеет с противоположных сторон ланцетовидную форму, а гонококк (возбудитель гонореи) и менингококк (возбу-

    Рис. 2.1. Формы бактерий

    дитель эпидемического менингита) имеют форму кофейных зерен, обращенных вогнутой поверхностью друг к другу.

    Стрептококки (от греч. streptos - цепочка) - клетки округлой или вытянутой формы, составляющие цепочку вследствие деления клеток в одной плоскости и сохранения связи между ними в месте деления.

    Сарцины (от лат. sarcina - связка, тюк) располагаются в виде пакетов из 8 кокков и более, так как они образуются при делении клетки в трех взаимно перпендикулярных плоскостях.

    Стафилококки (от греч. staphyle - виноградная гроздь) - кокки, расположенные в виде грозди винограда в результате деления в разных плоскостях.

    Палочковидные бактерии различаются по размерам, форме концов клетки и взаимному расположению клеток. Длина клеток 1-10 мкм, толщина 0,5-2 мкм. Палочки могут быть правильной

    (кишечная палочка и др.) и неправильной булавовидной (коринебактерии и др.) формы. К наиболее мелким палочковидным бактериям относятся риккетсии.

    Концы палочек могут быть как бы обрезанными (сибиреязвенная бацилла), закругленными (кишечная палочка), заостренными (фузобактерии) или в виде утолщения. В последнем случае палочка похожа на булаву (коринебактерии дифтерии).

    Слегка изогнутые палочки называются вибрионами (холерный вибрион). Большинство палочковидных бактерий располагается беспорядочно, так как после деления клетки расходятся. Если после деления клетки остаются связанными общими фрагментами клеточной стенки и не расходятся, то они располагаются под углом друг к другу (коринебактерии дифтерии) или образуют цепочку (сибиреязвенная бацилла).

    Извитые формы - спиралевидные бактерии, которые бывают двух видов: спириллы и спирохеты. Спириллы имеют вид штопорообразно извитых клеток с крупными завитками. К патогенным спириллам относятся возбудитель содоку (болезнь укуса крыс), а также кампилобактерии и хеликобактерии, имеющие изгибы, напоминающие крылья летящей чайки. Спирохеты представляют тонкие длинные извитые бактерии, отличающиеся от спирилл более мелкими завитками и характером движения. Особенность их строения описана ниже.

    Ветвящиеся - палочковидные бактерии, которые могут иметь разветвление в форме латинской буквы Y, встречающиеся у бифидобактерий, также быть представленными в виде нитевидных разветвленных клеток, способных переплетаться, образуя мицелий, что наблюдается у актиномицет.

    2.2.2. Структура бактериальной клетки

    Структура бактерий хорошо изучена с помощью электронной микроскопии целых клеток и их ультратонких срезов, а также других методов. Бактериальную клетку окружает оболочка, состоящая из клеточной стенки и цитоплазматической мембраны. Под оболочкой находится протоплазма, состоящая из цитоплазмы с включениями и наследственного аппарата - аналога ядра, называемого нуклеоидом (рис. 2.2). Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры.

    Рис. 2.2. Структура бактериальной клетки: 1 - капсула; 2 - клеточная стенка; 3 - цитоплазматическая мембрана; 4 - мезосомы; 5 - нуклеоид; 6 - плазмида; 7 - рибосомы; 8 - включения; 9 - жгутик; 10 - пили (ворсинки)

    Клеточная стенка - прочная, упругая структура, придающая бактерии определенную форму и вместе с подлежащей цитоплазматической мембраной сдерживающая высокое осмотическое давление в бактериальной клетке. Она участвует в процессе деления клетки и транспорте метаболитов, имеет рецепторы для бактериофагов, бактериоцинов и различных веществ. Наиболее толстая клеточная стенка у грамположительных бактерий (рис. 2.3). Так, если толщина клеточной стенки грамотрицательных бактерий около 15-20 нм, то у грамположительных она может достигать 50 нм и более.

    Основу клеточной стенки бактерий составляет пептидогликан. Пептидогликан является полимером. Он представлен параллельными полисахаридными гликановыми цепями, состоящими из повторяющихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединенных гликозидной связью. Эту связь разрывает лизоцим, являющийся ацетилмурамидазой.

    К N-ацетилмурамовой кислоте ковалентными связями присоединен тетрапептид. Тетрапептид состоит из L-аланина, который связан с N-ацетилмурамовой кислотой; D-глутамина, который у грамположительных бактерий соединен с L-лизином, а у грамотри-

    Рис. 2.3. Схема архитектоники клеточной стенки бактерий

    цательных бактерий - с диаминопимелиновой кислотой (ДАП), которая представляет собой предшественник лизина в процессе бактериального биосинтеза аминокислот и является уникальным соединением, присутствующим только у бактерий; 4-й аминокислотой является D-аланин (рис. 2.4).

    В клеточной стенке грамположительных бактерий содержится небольшое количество полисахаридов, липидов и белков. Основным компонентом клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40-90% массы клеточной стенки. Тетрапептиды разных слоев пептидогликана у грамположительных бактерий соединены друг с другом полипептидными цепочками из 5 остатков глицина (пентаглицина), что придает пептидогликану жесткую геометрическую структуру (рис. 2.4, б). С пептидогликаном ктеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. tekhos - стенка), молекулы которых представляют собой цепи из 8-50 остатков глицерола и рибитола, соединенных фосфатными мостиками. Форму и прочность бактериям придает жесткая волокнистая структура многослойного, с поперечными пептидными сшивками пептидогликана.

    Рис. 2.4. Структура пептидогликана: а - грамотрицательные бактерии; б - грамположительные бактерии

    Способность грамположительных бактерий при окраске по Граму удерживать генциановый фиолетовый в комплексе с йодом (сине-фиолетовая окраска бактерий) связана со свойством многослойного пептидогликана взаимодействовать с красителем. Кроме этого последующая обработка мазка бактерий спиртом вызывает сужение пор в пептидогликане и тем самым задерживает краситель в клеточной стенке.

    Грамотрицательные бактерии после воздействия спиртом утрачивают краситель, что обусловлено меньшим количеством пептидогликана (5-10% массы клеточной стенки); они обесцвечиваются спиртом, и при обработке фуксином или сафранином приобретают красный цвет. Это связано с особенностями строения клеточной стенки. Пептидогликан в клеточной стенке грамотрицательных бактерий представлен 1-2 слоями. Тетрапептиды слоев соединены между собой прямой пептидной связью между аминогруппой ДАП одного тетрапептида и карбоксильной группой D-аланина тетрапептида другого слоя (рис. 2.4, а). Кнаружи от пептидогликана расположен слой липопротеина, соединенный с пептидогликаном через ДАП. За ним следует наружная мембрана клеточной стенки.

    Наружная мембрана является мозаичной структурой, представленной липополисахаридами (ЛПС), фосфолипидами и белками. Внутренний слой ее представлен фосфолипидами, а в наружном слое расположен ЛПС (рис. 2.5). Таким образом, наружная мем-

    Рис. 2.5. Структура липополисахарида

    брана асимметрична. ЛПС наружной мембраны состоит из трех фрагментов:

    Липида А - консервативной структуры, практически одинаковой у грамотрицательных бактерий. Липид А состоит из фосфорилированных глюкозоаминовых дисахаридных единиц, к которым прикреплены длинные цепочки жирных кислот (см. рис. 2.5);

    Ядра, или стержневой, коровой части (от лат. core - ядро), относительно консервативной олигосахаридной структуры;

    Высоковариабельной О-специфической цепи полисахарида, образованной повторяющимися идентичными олигосахаридными последовательностями.

    ЛПС заякорен в наружной мембране липидом А, обусловливающим токсичность ЛПС и отождествляемым поэтому с эндотоксином. Разрушение бактерий антибиотиками приводит к освобождению большого количества эндотоксина, что может вызвать у больного эндотоксический шок. От липида А отходит ядро, или стержневая часть ЛПС. Наиболее постоянной частью ядра ЛПС является кетодезоксиоктоновая кислота. О-специфическая полисахаридная цепь, отходящая от стержневой части молекулы ЛПС,

    состоящая из повторяющихся олигосахаридных единиц, обусловливает серогруппу, серовар (разновидность бактерий, выявляемая с помощью иммунной сыворотки) определенного штамма бактерий. Таким образом, с понятием ЛПС связаны представления об О-антигене, по которому можно дифференцировать бактерии. Генетические изменения могут привести к дефектам, укорочению ЛПС бактерий и появлению в результате этого шероховатых колоний R-форм, теряющих О-антигенную специфичность.

    Не все грамотрицательные бактерии имеют полноценную О-специфическую полисахаридную цепь, состоящую из повторяющихся олигосахаридных единиц. В частности, бактерии рода Neisseria имеют короткий гликолипид, который называется липоолигосахаридом (ЛОС). Он сравним с R-формой, потерявшей О-антигенную специфичность, наблюдаемой у мутантных шероховатых штаммов E. coli. Структура ЛОС напоминает структуру гликосфинголипида цитоплазматической мембраны человека, поэтому ЛОС мимикрирует микроб, позволяя ему избегать иммунного ответа хозяина.

    Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы с относительной массой до 700 Д.

    Между наружной и цитоплазматической мембраной находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы, нуклеазы, β-лактамазы), а также компоненты транспортных систем.

    При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима, пенициллина, защитных факторов организма и других соединений образуются клетки с измененной (часто шаровидной) формой: протопласты - бактерии, полностью лишенные клеточной стенки; сферопласты - бактерии с частично сохранившейся клеточной стенкой. После удаления ингибитора клеточной стенки такие измененные бактерии могут реверсировать, т.е. приобретать полноценную клеточную стенку и восстанавливать исходную форму.

    Бактерии сфероили протопластного типа, утратившие способность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-формами (от названия Института им. Д. Листера, где они впер-

    вые были изучены). L-формы могут возникать и в результате мутаций. Они представляют собой осмотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бактериальные фильтры. Некоторые L-формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, возвращаясь в исходную бактериальную клетку. L-формы могут образовывать многие возбудители инфекционных болезней.

    Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм каждый разделены светлым - промежуточным). По структуре она похожа на плазмолемму клеток животных и состоит из двойного слоя липидов, главным образом фосфолипидов, с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. Некоторые из них являются пермеазами, участвующими в транспорте веществ. В отличие от эукариотических клеток, в цитоплазматической мембране бактериальной клетки отсутствуют стеролы (за исключением микоплазм).

    Цитоплазматическая мембрана является динамической структурой с подвижными компонентами, поэтому ее представляют как мобильную текучую структуру. Она окружает наружную часть цитоплазмы бактерий и участвует в регуляции осмотического давления, транспорте веществ и энергетическом метаболизме клетки (за счет ферментов цепи переноса электронов, аденозинтрифосфатазы - АТФазы и др.). При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты - впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами. Роль мезосом и внутрицитоплазматических мембран до конца не выяснена. Предполагают даже, что они являются артефактом, возникающим после приготовления (фиксации) препарата для электронной микроскопии. Тем не менее считают, что производные цитоплазматической мембраны участвуют в делении клетки, обеспечивая энергией синтез клеточной стенки, принимают участие в секреции веществ, спорообразовании, т.е. в процессах с высокой затратой энергии. Цитоплазма занимает основной объем бактери-

    альной клетки и состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом, ответственных за синтез (трансляцию) белков.

    Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от 80S-рибосом, характерных для эукариотических клеток. Поэтому некоторые антибиотики, связываясь с рибосомами бактерий, подавляют синтез бактериального белка, не влияя на синтез белка эукариотических клеток. Рибосомы бактерий могут диссоциировать на две субъединицы: 50S и 30S. рРНК - консервативные элементы бактерий («молекулярные часы» эволюции). 16S-рРНК входит в состав малой субъединицы рибосом, а 23S-рРНК - в состав большой субъединицы рибосом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.

    В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, β-оксимасляной кислоты и полифосфатов (волютин). Они накапливаются при избытке питательных веществ в окружающей среде и выполняют роль запасных веществ для питания и энергетических потребностей.

    Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Толуидиновым синим или метиленовым голубым волютин окрашивается в краснофиолетовый цвет, а цитоплазма бактерии - в синий. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки. Метахроматическое окрашивание волютина связано с высоким содержанием полимеризованного неорганического полифосфата. При электронной микроскопии они имеют вид электронноплотных гранул размером 0,1-1 мкм.

    Нуклеоид - эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, плотно уложенной наподобие клубка. Нуклеоид бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). У большинства бактерий содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК. Но у некоторых бактерий имеются две хромосомы кольцевой формы (V. cholerae) и линейные хромосомы (см. раздел 5.1.1). Нуклеоид выявляется в световом микроскопе после окраски специфическими для ДНК

    методами: по Фельгену или по Романовскому-Гимзе. На электронограммах ультратонких срезов бактерий нуклеоид имеет вид светлых зон с фибриллярными, нитевидными структурами ДНК, связанной определенными участками с цитоплазматической мембраной или мезосомой, участвующими в репликации хромосомы.

    Кроме нуклеоида, в бактериальной клетке имеются внехромосомные факторы наследственности - плазмиды (см. раздел 5.1.2), представляющие собой ковалентно замкнутые кольца ДНК.

    Капсула, микрокапсула, слизь. Капсула - слизистая структура толщиной более 0,2 мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка по Бурри- Гинсу, создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы. Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, включает большое количество воды. Она препятствует фагоцитозу бактерий. Капсула антигенна: антитела к капсуле вызывают ее увеличение (реакция набухания капсулы).

    Многие бактерии образуют микрокапсулу - слизистое образование толщиной менее 0,2 мкм, выявляемое лишь при электронной микроскопии.

    От капсулы следует отличать слизь - мукоидные экзополисахариды, не имеющие четких внешних границ. Слизь растворима в воде.

    Мукоидные экзополисахариды характерны для мукоидных штаммов синегнойной палочки, часто встречающихся в мокроте больных кистозным фиброзом. Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам); их еще называют гликокаликсом.

    Капсула и слизь предохраняют бактерии от повреждений, высыхания, так как, являясь гидрофильными, хорошо связывают воду, препятствуют действию защитных факторов макроорганизма и бактериофагов.

    Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие на-

    чало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из трех частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (одна пара дисков у грамположительных и две пары у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем - ротором, вращающим жгутик. В качестве источника энергии используется разность протонных потенциалов на цитоплазматической мембране. Механизм вращения обеспечивает протонная АТФ-синтетаза. Скорость вращения жгутика может достигать 100 об/с. При наличии у бактерии нескольких жгутиков они начинают синхронно вращаться, сплетаясь в единый пучок, образующий своеобразный пропеллер.

    Жгутики состоят из белка - флагеллина (flagellum - жгутик), являющегося антигеном - так называемый Н-антиген. Субъединицы флагеллина закручены в виде спирали.

    Число жгутиков у бактерий разных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен, отходящих по периметру бактерии (перитрих), у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

    Жгутики выявляют с помощью электронной микроскопии препаратов, напыленных тяжелыми металлами, или в световом микроскопе после обработки специальными методами, основанными на протравливании и адсорбции различных веществ, приводящих к увеличению толщины жгутиков (например, после серебрения).

    Ворсинки, или пили (фимбрии) - нитевидные образования, более тонкие и короткие (3-10 нм * 0,3-10 мкм), чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина. Известно несколько типов пилей. Пили общего типа отвечают за прикрепления к субстрату, питание и водно-солевой обмен. Они многочисленны - несколько сотен на клетку. Половые пили (1-3 на клетку) создают контакт между клетками, осуществляя между ними передачу генетической информации путем конъюгации (см. главу 5). Особый интерес представляют пили IV типа, у которых концы обладают гидрофобностью, в результате чего они закручиваются, эти пили называют еще кудряшками. Располага-

    ются они по полюсам клетки. Эти пили встречаются у патогенных бактерий. Они обладают антигенными свойствами, осуществляют контакт бактерии с клеткой-хозяином, участвуют в образовании биопленки (см. главу 3). Многие пили являются рецепторами для бактериофагов.

    Споры - своеобразная форма покоящихся бактерий с грамположительным типом строения клеточной стенки. Спорообразующие бактерии рода Bacillus, у которых размер споры не превышает диаметр клетки, называются бациллами. Спорообразующие бактерии, у которых размер споры превышает диаметр клетки, отчего они принимают форму веретена, называются клостридиями, например бактерии рода Clostridium (от лат. Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нельсена в красный, а вегетативная клетка - в синий цвет.

    Спорообразование, форма и расположение спор в клетке (вегетативной) являются видовым свойством бактерий, что позволяет отличать их друг от друга. Форма спор бывает овальной и шаровидной, расположение в клетке - терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное - ближе к концу палочки (у возбудителей ботулизма, газовой гангрены) и центральное (у сибиреязвенной бациллы).

    Процесс спорообразования (споруляция) проходит ряд стадий, в течение которых часть цитоплазмы и хромосома бактериальной вегетативной клетки отделяются, окружаясь врастающей цитоплазматической мембраной, - образуется проспора.

    В протопласте проспоры находятся нуклеоид, белоксинтезирующая система и система получения энергии, основанная на гликолизе. Цитохромы отсутствуют даже у аэробов. Не содержится АТФ, энергия для прорастания сохраняется в форме 3-глицеринфосфата.

    Проспору окружают две цитоплазматические мембраны. Слой, окружающий внутреннюю мембрану споры, называется стенкой споры, он состоит из пептидогликана и является главным источником клеточной стенки при прорастании споры.

    Между наружной мембраной и стенкой споры формируется толстый слой, состоящий из пептидогликана, имеющего много сшивок, - кортекс.

    Кнаружи от внешней цитоплазматической мембраны расположена оболочка споры, состоящая из кератиноподобных белков, со-

    держащих множественные внутримолекулярные дисульфидные связи. Эта оболочка обеспечивает резистентность к химическим агентам. Споры некоторых бактерий имеют дополнительный покров - экзоспориум липопротеиновой природы. Таким образом формируется многослойная плохо проницаемая оболочка.

    Спорообразование сопровождается интенсивным потреблением проспорой, а затем и формирующейся оболочкой споры дипиколиновой кислоты и ионов кальция. Спора приобретает термоустойчивость, которую связывают с наличием в ней дипиколината кальция.

    Спора долго может сохраняться из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизма. В почве, например, возбудители сибирской язвы и столбняка могут сохраняться десятки лет.

    В благоприятных условиях споры прорастают, проходя три последовательные стадии: активации, инициации, вырастания. При этом из одной споры образуется одна бактерия. Активация - это готовность к прорастанию. При температуре 60-80 °С спора активируется для прорастания. Инициация прорастания длится несколько минут. Стадия вырастания характеризуется быстрым ростом, сопровождающимся разрушением оболочки и выходом проростка.

    2.2.3. Особенности строения спирохет, риккетсий, хламидий, актиномицет и микоплазм

    Спирохеты - тонкие длинные извитые бактерии. Они состоят из наружной мембранной клеточной стенки, которая окружает цитоплазматический цилиндр. Поверх наружной мембраны располагается прозрачный чехол гликозаминогликановой природы. Под наружной мембранной клеточной стенки располагаются фибриллы, закручивающиеся вокруг цитоплазматического цилиндра, придавая бактериям винтообразную форму. Фибриллы прикреплены к концам клетки и направлены навстречу друг другу. Число и расположение фибрилл варьируют у разных видов. Фибриллы участвуют в передвижении спирохет, придавая клеткам вращательное, сгибательное и поступательное движение. При этом спирохеты образуют петли, завитки, изгибы, которые названы вторичными завитками. Спирохеты плохо воспринимают красители. Обычно их окрашивают по Романовскому-Гимзе или серебрением. В живом

    виде спирохеты исследуют с помощью фазово-контрастной или темнопольной микроскопии.

    Спирохеты представлены тремя родами, патогенными для человека: Treponema, Borrelia, Leptospira.

    Трепонемы (род Treponema) имеют вид тонких штопорообразно закрученных нитей с 8-12 равномерными мелкими завитками. Вокруг протопласта трепонем расположены 3-4 фибриллы (жгутики). В цитоплазме имеются цитоплазматические филаменты. Патогенными представителями являются Т. pallidum - возбудитель сифилиса, T. pertenue - возбудитель тропической болезни - фрамбезии. Имеются и сапрофиты - обитатели полости рта человека, ила водоемов.

    Боррелии (род Borrelia), в отличие от трепонем, более длинные, имеют по 3-8 крупных завитков и 7-20 фибрилл. К ним относятся возбудитель возвратного тифа (В. recurrentis) и возбудители болезни Лайма (В. burgdorferi) и других заболеваний.

    Лептоспиры (род Leptospira) имеют завитки неглубокие и частые в виде закрученной веревки. Концы этих спирохет изогнуты наподобие крючков с утолщениями на концах. Образуя вторичные завитки, они приобретают вид букв S или С; имеют две осевые фибриллы. Патогенный представитель L. interrogans вызывает лептоспироз при попадании в организм с водой или пищей, приводя к кровоизлияниям и желтухе.

    Риккетсии обладают независимым от клетки хозяина метаболизмом, однако, возможно, они получают от клетки хозяина макроэргические соединения для своего размножения. В мазках и тканях их окрашивают по Романовскому-Гимзе, по Маккиавелло- Здродовскому (риккетсии красного цвета, а инфицированные клетки - синего).

    У человека риккетсии вызывают эпидемический сыпной тиф (R. prowazekii), клещевой риккетсиоз (R. sibirica), пятнистую лихорадку Скалистых гор (R. rickettsii) и другие риккетсиозы.

    Строение их клеточной стенки напоминает таковую грамотрицательных бактерий, хотя имеются отличия. Она не содержит типичного пептидогликана: в его составе полностью отсутствует N-ацетилмурамовая кислота. В состав клеточной стенки входит двойная наружная мембрана, которая включает липополисахарид и белки. Несмотря на отсутствие пептидогликана, клеточная стенка хламидий обладает ригидностью. Цитоплазма клетки ограничена внутренней цитоплазматической мембраной.

    Основным методом выявления хламидий является окраска по Романовскому-Гимзе. Цвет окраски зависит от стадии жизненного цикла: элементарные тельца окашиваются в пурпурный цвет на фоне голубой цитоплазмы клетки, ретикулярные тельца - в голубой цвет.

    У человека хламидии вызывают поражения глаз (трахома, конъюнктивит), урогенитального тракта, легких и др.

    Актиномицеты - ветвящиеся, нитевидные или палочковидные грамположительные бактерии. Свое название (от греч. actis - луч, mykes - гриб) они получили в связи с образованием в пораженных тканях друз - гранул из плотно переплетенных нитей в виде

    лучей, отходящих от центра и заканчивающихся колбовидными утолщениями. Актиномицеты, как и грибы, образуют мицелий - нитевидные переплетающиеся клетки (гифы). Они формируют субстратный мицелий, образующийся в результате врастания клеток в питательную среду, и воздушный, растущий на поверхности среды. Актиномицеты могут делиться путем фрагментации мицелия на клетки, похожие на палочковидные и кокковидные бактерии. На воздушных гифах актиномицетов образуются споры, служащие для размножения. Споры актиномицетов обычно не термостойки.

    Общую филогенетическую ветвь с актиномицетами образуют так называемые нокардиоподобные (нокардиоформные) актиномицеты - собирательная группа палочковидных бактерий неправильной формы. Их отдельные представители образуют ветвящиеся формы. К ним относят бактерии родов Corynebacterium, Mycobacterium, Nocardia и др. Нокардиоподобные актиномицеты отличаются наличием в клеточной стенке сахаров арабинозы, галактозы, а также миколовых кислот и больших количеств жирных кислот. Миколовые кислоты и липиды клеточных стенок обусловливают кислотоустойчивость бактерий, в частности микобактерий туберкулеза и лепры (при окраске по Цилю-Нельсену они имеют красный цвет, а некислотоустойчивые бактерии и элементы ткани, мокроты - синий цвет).

    Патогенные актиномицеты вызывают актиномикоз, нокардии - нокардиоз, микобактерии - туберкулез и лепру, коринебактерии - дифтерию. Сапрофитные формы актиномицетов и нокардиоподобных актиномицетов широко распространены в почве, многие из них являются продуцентами антибиотиков.

    Микоплазмы - мелкие бактерии (0,15-1 мкм), окруженные только цитоплазматической мембраной, содержащей стеролы. Они относятся к классу Mollicutes. Из-за отсутствия клеточной стенки микоплазмы осмотически чувствительны. Имеют разнообразную форму: кокковидную, нитевидную, колбовидную. Эти формы видны при фазово-контрастной микроскопии чистых культур микоплазм. На плотной питательной среде микоплазмы образуют колонии, напоминающие яичницу-глазунью: центральная непрозрачная часть, погруженная в среду, и просвечивающая периферия в виде круга.

    Микоплазмы вызывают у человека атипичную пневмонию (Mycoplasma pneumoniae) и поражения мочеполового тракта

    (М. hominis и др.). Микоплазмы вызывают заболевания не только у животных, но и у растений. Достаточно широко распространены и непатогенные представители.

    2.3. Строение и классификация грибов

    Грибы относятся к домену Eukarya, царству Fungi (Mycota, Mycetes). Недавно грибы и простейшие были разделены на самостоятельные царства: царство Eumycota (настоящие грибы), царство Chromista и царство Protozoa. Некоторые микроорганизмы, ранее считавшиеся грибами или простейшими, были перемещены в новое царство Chromista (хромовики). Грибы - многоклеточные или одноклеточные нефотосинтезирующие (бесхлорофильные) эукариотические микроорганизмы с толстой клеточной стенкой. Они имеют ядро с ядерной оболочкой, цитоплазму с органеллами, цитоплазматическую мембрану и многослойную ригидную клеточную стенку, состоящую из нескольких типов полисахаридов (маннаны, глюканы, целлюлоза, хитин), а также белка, липидов и др. Некоторые грибы образуют капсулу. Цитоплазматическая мембрана содержит гликопротеины, фосфолипиды и эргостеролы (в отличие от холестерина - главного стерола тканей млекопитающих). Большинство грибов - облигатные или факультативные аэробы.

    Грибы широко распространены в природе, особенно в почве. Некоторые грибы содействуют производству хлеба, сыра, молочнокислых продуктов и алкоголя. Другие грибы продуцируют антимикробные антибиотики (например, пенициллин) и иммунодепрессивные лекарства (например, циклоспорин). Грибы используют генетики и молекулярные биологи для моделирования различных процессов. Фитопатогенные грибы наносят значительный ущерб сельскому хозяйству, вызывая грибковые болезни злаковых растений и зерна. Инфекции, вызываемые грибами, называются микозами. Различают гифальные и дрожжевые грибы.

    Гифальные (плесневые) грибы, или гифомицеты, состоят из тонких нитей толщиной 2-50 мкм, называемых гифами, которые сплетаются в грибницу или мицелий (плесень). Тело гриба называется талломом. Различают демациевые (пигментированные - коричневые или черные) и гиалиновые (непигментированные) гифомицеты. Гифы, врастающие в питательный субстрат, отвечают за питание гриба и называются вегетативными гифами. Гифы, ра-

    стущие над поверхностью субстрата, называются воздушными или репродуктивными гифами (отвечают за размножение). Колонии из-за воздушного мицелия имеют пушистый вид.

    Различают низшие и высшие грибы: гифы высших грибов разделены перегородками, или септами с отверстиями. Гифы низших грибов не имеют перегородок, представляя собой многоядерные клетки, называемые ценоцитными (от греч. koenos - единый, общий).

    Дрожжевые грибы (дрожжи) в основном представлены отдельными овальными клетками диаметром 3-15 мкм, а их колонии, в отличие от гифальных грибов, имеют компактный вид. По типу полового размножения они распределены среди высших грибов - аскомицет и базидиомицет. При бесполом размножении дрожжи образуют почки или делятся. Могут образовывать псевдогифы и ложный мицелий (псевдомицелий) в виде цепочек удлиненных клеток - «сарделек». Грибы, аналогичные дрожжам, но не имеющие полового способа размножения, называют дрожжеподобными. Они размножаются только бесполым способом - почкованием или делением. Понятия «дрожжеподобные грибы» часто идентифицируют с понятием «дрожжи».

    Многие грибы обладают диморфизмом - способностью к гифальному (мицелиальному) или дрожжеподобному росту в зависимости от условий культивирования. В инфицированном организме они растут в виде дрожжеподобных клеток (дрожжевая фаза), а на питательных средах образуют гифы и мицелий. Диморфизм связан с температурным фактором: при комнатной температуре образуется мицелий, а при 37 °С (при температуре тела человека) - дрожжеподобные клетки.

    Грибы размножаются половым или бесполым способом. Половое размножение грибов происходит с образованием гамет, половых спор и других половых форм. Половые формы называются телеоморфами.

    Бесполое размножение грибов происходит с образованием соответствующих форм, называемых анаморфами. Такое размножение происходит почкованием, фрагментацией гиф и бесполыми спорами. Эндогенные споры (спорангиоспоры) созревают внутри округлой структуры - спорангия. Экзогенные споры (конидии) формируются на кончиках плодоносящих гиф, так называемых конидиеносцах.

    Различают разнообразые конидии. Артроконидии (артроспоры), или таллоконидии, образуются при равномерном септировании и расчленении гиф, а бластоконидии образуются в результате почкования. Небольшие одноклеточные конидии называются микроконидиями, большие многоклеточные конидии - макроконидиями. К бесполым формам грибов относят также хламидоконидии, или хламидоспоры (толстостенные крупные покоящиеся клетки или комплекс мелких клеток).

    Различают совершенные и несовершенные грибы. Совершенные грибы имеют половой способ размножения; к ним относят зигомицеты (Zygomycota), аскомицеты (Ascomycota) и базидиомицеты (Basidiomycota). Несовершенные грибы имеют только бесполый способ размножения; к ним относят формальный условный тип/ группу грибов - дейтеромицеты (Deiteromycota).

    Зигомицеты относятся к низшим грибам (мицелий несептированный). Они включают представителей родов Mucor, Rhizopus, Rhizomucor, Absidia, Basidiobolus, Conidiobolus. Распространены в почве и воздухе. Могут вызывать зигомикоз (мукоромикоз) легких, головного мозга и других органов человека.

    При бесполом размножении зигомицет на плодоносящей гифе (спорангиеносце) образуется спорангий - шаровидное утолщение с оболочкой, содержащее многочисленные спорангиоспоры (рис. 2.6, 2.7). Половое размножение у зигомицетов происходит с помощью зигоспор.

    Аскомицеты (сумчатые грибы) имеют септированный мицелий (кроме одноклеточных дрожжей). Свое название они получили от основного органа плодоношения - сумки, или аска, содержащего 4 или 8 гаплоидных половых спор (аскоспор).

    К аскомицетам относятся отдельные представители (телеоморфы) родов Aspergillus и Penicillium. Большинство грибов родов Aspergillus, Penicillium являются анаморфами, т.е. размножаются только беспо-

    Рис. 2.6. Грибы рода Mucor (рис. А.С. Быкова)

    Рис. 2.7. Грибы рода Rhizopus. Развитие спорангия, спорангиоспор и ризоидов

    лым путем с помощью бесполых спор - конидий (рис. 2.8, 2.9) и должны быть отнесены по этому признаку к несовершенным грибам. У грибов рода Aspergillus на концах плодоносящих гиф, конидиеносцах, имеются утолщения - стеригмы, фиалиды, на которых образуются цепочки конидий («леечная плесень»).

    У грибов рода Penicillium (кистевик) плодоносящая гифа напоминает кисточку, так как из нее (на конидиеносце) образуются утолщения, разветвляющиеся на более мелкие структуры - стеригмы, фиалиды, на которых находятся цепочки конидий. Некоторые виды аспергилл могут вызывать аспергиллезы и афлатоксикозы, пенициллы могут вызывать пенициллиозы.

    Представителями аскомицетов являются телеоморфы родов Trichophyton, Microsporum, Histoplasma, Blastomyces, а также дрож-

    Рис. 2.8. Грибы рода Penicillium. Цепочки конидий отходят от фиалид

    Рис. 2.9. Грибы рода Aspergillus fumigatus. От фиалид отходят цепочки конидий

    Базидиомицеты включают шляпочные грибы. Они имеют септированный мицелий и образуют половые споры - базидиоспоры путем отшнуровывания от базидия - концевой клетки мицелия, гомологичной аску. К базидиомицетам относятся некоторые дрожжи, например телеоморфы Cryptococcus neoformans.

    Дейтеромицеты являются несовершенными грибами (Fungi imperfecti, анаморфные грибы, конидиальные грибы). Это условный, формальный таксон грибов, объединяющий грибы, не имеющие полового размножения. Недавно вместо термина «дейтеромицеты» предложен термин «митоспоровые грибы» - грибы, размножающиеся неполовыми спорами, т.е. путем митоза. При установлении факта полового размножения несовершенных грибов их переносят в один из известных типов - Ascomycota или Basidiomycota, присваивая название телеоморфной формы. Дейтеромицеты имеют септированный мицелий, размножаются только путем бесполого формирования конидий. К дейтеромицетам относятся несовершенные дрожжи (дрожжеподобные грибы), например некоторые грибы рода Candida, поражающие кожу, слизистые оболочки и внутренние органы (кандидоз). Они имеют овальную форму, диаметр 2-5 мкм, делятся почкованием, образуют псевдогифы (псевдомицелий) в виде цепочек из удлиненных клеток, иногда образуют гифы. Для Candida albicans характерно образование хламидоспор (рис. 2.10). К дейтеромицетам относят также другие грибы, не имеющие полового способа размножения, относящиеся к родам Epidermophyton, Coccidioides, Paracoccidioides, Sporothrix, Aspergillus, Phialophora, Fonsecaeа, Exophiala, Cladophialophora, Bipolaris, Exerohilum, Wangiella, Alrernaria и др.

    Рис. 2.10. Грибы рода Candida albicans (рис. А.С. Быкова)

    2.4. Строение и классификация простейших

    Простейшие относятся к домену Eukarya, царству животных (Animalia), подцарству Protozoa. Недавно предложено выделить простейшие в ранг царства Protozoa.

    Клетка простейших окружена мембраной (пелликулой) - аналогом цитоплазматической мембраны клеток животных. Она имеет ядро с ядерной оболочкой и ядрышком, цитоплазму, содержащую эндоплазматический ретикулум, митохондрии, лизосомы и рибосомы. Размеры простейших колеблются от 2 до 100 мкм. При окраске по Романовскому-Гимзе ядро простейших имеет красный, а цитоплазма - голубой цвет. Простейшие передвигаются с помощью жгутиков, ресничек или псевдоподий, некоторые из них имеют пищеварительные и сократительные (выделительные) вакуоли. Они могут питаться в результате фагоцитоза или образования особых структур. По типу питания они разделяются на гетеротрофы и аутотрофы. Многие простейшие (дизентерийная амеба, лямблии, трихомонады, лейшмании, балантидии) могут расти на питательных средах, содержащих нативные белки и аминокислоты. Для их культивирования используют также культуры клеток, куриные эмбрионы и лабораторных животных.

    Простейшие размножаются бесполым путем - двойным или множественным (шизогония) делением, а некоторые и половым путем (спорогония). Одни простейшие размножаются внеклеточно (лямблии), а другие - внутриклеточно (плазмодии, токсоплазма, лейшмании). Жизненный цикл простейших характеризуется стадийностью - образованием стадии трофозоита и стадии цисты. Цисты - покоящиеся стадии, устойчивые к изменению температуры и влажности. Кислотоустойчивостью отличаются цисты Sarcocystis, Cryptosporidium и Isospora.

    Ранее простейшие, вызывающие заболевания у человека, были представлены 4 типами 1 (Sarcomastigophora, Apicomplexa, Ciliophora, Microspora). Эти типы недавно реклассифицированы на большее количество, появились новые царства - Protozoa и Chromista (табл. 2.2). В новое царство Chromista (хромовики) вошли некоторые простейшие и грибы (бластоцисты, оомицеты и Rhinosporidium seeberi). Царство Protozoa включает амебы, жгутиконосцы, споровики и реснитчатые. Они подразделены на различные типы, среди которых различают амебы, жгутиконосцы, споровики и реснитчатые.

    Таблица 2.2. Представители царств Protozoa и Chromista, имеющие медицинское значение

    1 Тип Sarcomastigophora состоял из подтипов Sarcodina и Mastigophora. Подтип Sarcodina (саркодовые) включал дизентерийную амебу, а подтип Mastigophora (жгутиконосцы) - трипаносомы, лейшмании, лямблию и трихомонады. Тип Apicomplexa включал класс Sporozoa (споровики), куда входили плазмодии малярии, токсоплазма, криптоспоридии и др. Тип Ciliophora включает балантидии, а тип Microspora - микроспоридии.

    Окончание табл. 2.2

    К амебам относятся возбудитель амебиаза человека - амебной дизентерии (Entamoeba histolytica), свободно живущие и непатогенные амебы (кишечная амеба и др.). Амебы размножаются бинарно бесполым путем. Их жизненный цикл состоит из стадии трофозоита (растущая, подвижная клетка, малоустойчивая) и стадии цисты. Трофозоиты передвигаются с помощью псевдоподий, которые захватывают и погружают в цитоплазму питательные вещества. Из

    трофозоита образуется циста, устойчивая к внешним факторам. Попав в кишечник, она превращается в трофозоит.

    Жгутиконосцы характеризуются наличием жгутиков: у лейшманий один жгутик, у трихомонад 4 свободных жгутика и один жгутик, соединенный с короткой ундулирующей мембраной. Ими являются:

    Жгутиконосцы крови и тканей (лейшмании - возбудители лейшманиозов; трипаносомы - возбудители сонной болезни и болезни Шагаса);

    Жгутиконосцы кишечника (лямблия - возбудитель лямблиоза);

    Жгутиконосцы мочеполового тракта (трихомонада влагалищная - возбудитель трихомоноза).

    Реснитчатые представлены балантидиями, которые поражают толстую кишку человека (балантидиазная дизентерия). Балантидии имеют стадию трофозоита и цисты. Трофозоит подвижен, имеет многочисленные реснички, более тонкие и короткие, чем жгутики.

    2.5. Строение и классификация вирусов

    Вирусы - мельчайшие микробы, относящиеся к царству Virae (от лат. virus - яд). Они не имеют клеточного строения и состоят

    Структуру вирусов из-за их малых размеров изучают с помощью электронной микроскопии как вирионов, так и их ультратонких срезов. Размеры вирусов (вирионов) определяют напрямую с помощью электронной микроскопии или косвенно методом ультрафильтрации через фильтры с известным диаметром пор, методом ультрацентрифугирования. Размер вирусов колеблется от 15 до 400 нм (1 нм равен 1/1000 мкм): к маленьким вирусам, размер которых сходен с размером рибосом, относят парвовирусы и вирус полиомиелита, а к наиболее крупным - вирус натуральной оспы (350 нм). Вирусы отличаются по форме вирионов, которые имеют вид палочек (вирус табачной мозаики), пули (вирус бешенства), сферы (вирусы полиомиелита, ВИЧ), нити (филовирусы), сперматозоида (многие бактериофаги).

    Вирусы поражают воображение своим разнообразием структуры и свойств. В отличие от клеточных геномов, которые содержат однородную двунитевую ДНК, вирусные геномы чрезвычайно разнообразны. Различают ДНК- и РНК-содержащие вирусы, которые гаплоидны, т.е. имеют один набор генов. Диплоидный геном имеют только ретровирусы. Геном вирусов содержит от 6 до 200 генов и представлен различными видами нуклеиновых кислот: двунитевыми, однонитевыми, линейными, кольцевыми, фрагментированными.

    Среди однонитевых РНК-содержащих вирусов различают геномные плюс-нить РНК и минус-нить РНК (полярность РНК). Плюс-нить (позитивная нить) РНК этих вирусов, кроме геномной (наследственной) функции, выполняет функцию информационной, или матричной РНК (иРНК, или мРНК); она является матрицей для белкового синтеза на рибосомах инфицированной клетки. Плюс-нить РНК является инфекционной: при введении в чувствительные клетки она способна вызвать инфекционный про-

    цесс. Минус-нить (негативная нить) РНК-содержащих вирусов выполняет только наследственную функцию; для синтеза белка на минус-нити РНК синтезируется комплементарная ей нить. У некоторых вирусов РНК-геном является амбиполярным (ambisense от греч. амби - с обеих сторон, двойная комплементарность), т.е. содержит плюс- и минус-сегменты РНК.

    Различают простые вирусы (например, вирус гепатита А) и сложные вирусы (например, вирусы гриппа, герпеса, коронавирусы).

    Простые, или безоболочечные, вирусы имеют только нуклеиновую кислоту, связанную с белковой структурой, называемой капсидом (от лат. capsa - футляр). Протеины, связанные с нуклеиновой кислотой, известны как нуклеопротеины, а ассоциация вирусных протеинов капсида вируса с вирусной нуклеиновой кислотой названа нуклеокапсидом. Некоторые простые вирусы могут формировать кристаллы (например, вирус ящура).

    Капсид включает повторяющиеся морфологические субъединицы - капсомеры, скомпонованные из нескольких полипептидов. Нуклеиновая кислота вириона, связываясь с капсидом, образует нуклеокапсид. Капсид защищает нуклеиновую кислоту от деградации. У простых вирусов капсид участвует в прикреплении (адсорбции) к клетке хозяина. Простые вирусы выходят из клетки в результате ее разрушения (лизиса).

    Сложные, или оболочечные, вирусы (рис. 2.11), кроме капсида, имеют мембранную двойную липопротеиновую оболочку (синоним: суперкапсид, или пеплос), которая приобретается путем почкования вириона через мембрану клетки, например через плазматическую мембрану, мембрану ядра или мембрану эндоплазматического ретикулума. На оболочке вируса расположены гликопротеиновые шипы,

    или шипики, пепломеры. Разрушение оболочки эфиром и другими растворителями инактивирует сложные вирусы. Под оболочкой некоторых вирусов находится матриксный белок (М-белок).

    Вирионы имеют спиральный, икосаэдрический (кубический) или сложный тип симметрии капсида (нуклеокапсида). Спиральный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вирусов гриппа, коронавирусов): капсомеры уложены по спирали вместе с нуклеиновой кислотой. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту (например, у вируса герпеса).

    Капсид и оболочка (суперкапсид) защищают вирионы от воздействия окружающей среды, обусловливают избирательное взаимодействие (адсорбцию) своими рецепторными белками с опреде-

    Рис. 2.11. Строение оболочечных вирусов с икосаэдрическим (а) и спиральным (б) капсидом

    ленными клетками, а также антигенные и иммуногенные свойства вирионов.

    Внутренние структуры вирусов называют сердцевиной. У аденовирусов сердцевина состоит из гистоноподобных белков, связанных с ДНК, у реовирусов - из белков внутреннего капсида.

    Лауреат Нобелевской премии Д. Балтимор предложил систему балтиморской классификации, основанной на механизме синтеза мРНК. Эта классификация размещает вирусы в 7 группах (табл. 2.3). Международный комитет на таксономии вирусов (ICTV) принял универсальную систему классификации, которая использует такие таксономические категории, как семейство (название оканчивается на viridae), подсемейство (название оканчивается на virinae), род (название оканчивается на virus). Вид вируса не получил биноминального названия, как у бактерий. Вирусы классифицируют по типу нуклеиновой кислоты (ДНК или РНК), ее структуре и количеству нитей. Они имеют двунитевые или однонитевые нуклеиновые кислоты; позитивную (+), негативную (-) полярность нуклеиновой кислоты или смешанную полярность нуклеиновой кислоты, амбиполярную (+, -); линейную или циркулярную нуклеиновую кислоту; фрагментированную или нефрагментированную нуклеиновую кислоту. Учитывают также размер и морфологию вирионов, количество капсомеров и тип симметрии нуклеокапсида, наличие оболочки (суперкапсида), чувствительность к эфиру и дезоксихолату, место размножения в клетке, антигенные свойства и др.

    Таблица 2.3. Основные вирусы, имеющие медицинское значение

    Продолжение табл. 2.3

    Окончание табл. 2.3

    Вирусы поражают животных, бактерии, грибы и растения. Являясь основными возбудителями инфекционных заболеваний человека, вирусы также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирус краснухи, цитомегаловирус и др.), поражая плод человека. Они могут приводить и к постинфекционным осложнениям - развитию миокардитов, панкреатитов, иммунодефицитов и др.

    К неклеточным формам жизни, кроме вирусов, относят прионы и вироиды. Вироиды - небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие белок и вызывающие заболевания растений. Патологические прионы - инфекционные белковые частицы, вызывающие особые конформационные болезни в результате изменения структуры нормального клеточного прионового протеина (PrP c ), который имеется в организме животных и человека. PrP с выполняет регуляторные функции. Его кодирует нормальный прионовый ген (PrP-ген), расположенный в коротком плече 20-й хромосомы человека. Прионные болезни протекают по типу трансмиссивных губкообразных энцефалопатий (болезнь Крейтцфельда-Якоба, куру и др.). При этом прионный протеин приобретает другую, инфекционную форму, обозначаемую как PrP sc (sc от scrapie - скрепи - прионная инфекция овец и коз). Этот инфекционный прионный протеин имеет вид фибрилл и отличается от нормального прионного протеина третичной или четвертичной структурой.

    Задания для самоподготовки (самоконтроля)

    А. Отметьте микробы, являющиеся прокариотами:

    2. Вирусы.

    3. Бактерии.

    4. Прионы.

    Б. Отметьте отличительные особенности прокариотической клетки:

    1. Рибосомы 70S.

    2. Наличие пептидогликана в клеточной стенке.

    3. Наличие митохондрий.

    4. Диплоидный набор генов.

    В. Отметьте составные компоненты пептидогликана:

    1. Тейхоевые кислоты.

    2. N-ацетилглюкозоамин.

    3. Липополисарид.

    4. Тетрапептид.

    Г. Отметьте особенности строения клеточной стенки грамотрицательных бактерий:

    1. Мезодиаминопимелиновая кислота.

    2. Тейхоевые кислоты.

    4. Белки-порины.

    Д. Назовите функции спор у бактерий:

    1. Сохранение вида.

    2. Жароустойчивость.

    3. Расселение субстрата.

    4. Размножение.

    1. Риккетсии.

    2. Актиномицеты.

    3. Спирохеты.

    4. Хламидии.

    Ж. Назовите особенности актиномицет:

    1. Имеют термолабильные споры.

    2. Грамположительные бактерии.

    3. Отсутствует клеточная стенка.

    4. Имеют извитую форму.

    З. Назовите особенности спирохет:

    1. Грамотрицательные бактерии.

    2. Имеют двигательный фибриллярный аппарат.

    3. Имеют извитую форму.

    И. Назовите простейшие, обладающие апикальным комплексом, позволяющим проникать внутрь клетки:

    1. Малярийный плазмодий.

    3. Токсоплазма.

    4. Криптоспоридии.

    К. Назовите отличительную особенность сложноорганизованных вирусов:

    1. Два типа нуклеиновой кислоты.

    2. Наличие липидной оболочки.

    3. Двойной капсид.

    4. Наличие неструктурных белков. Л. Отметьте высшие грибы:

    1. Mucor.

    2. Candida.

    3. Penicillium.

    4. Aspergillus.