Впервые в мире получена молекула ридберга. Ученые создали новую форму материи, под названием «фотонная молекула»

Группа ученых из исследовательского Центра изучения ультрахолодных атомов Гарварда-Массачуссетса (Harvard-MIT Center for Ultracold Atoms), возглавляемая профессорами Михаилом Лукиным (Mikhail Lukin) и Владэном Вулетиком (Vladan Vuletic), впервые в истории науки заставили фотоны света взаимодействовать между собой и связаться, образуя нечто молекул вещества, формирующих материю, которая до этого существовала только в теории. Данное открытие было сделано вопреки всем знаниям людей о природе света, которые накапливались в течение более чем сотни лет, и оно опровергает утверждение о том, что фотоны являются нейтральными невесомыми частицами, которые не могут взаимодействовать друг с другом.

"Поведение образованных фотонных молекул отличается от поведения света естественного происхождения и искусственного происхождения, от лучей лазерного света из которого они были сделаны" - рассказывает профессор Лукин, - "Больше всего их поведение напоминает нечто, хорошо известное нам по научной фантастике - световой меч рыцарей-джедаев из "Звездных войн"".

"Большинство свойств света, которые известны нам в настоящее время, указывают на то, что фотоны невесомы и не взаимодействуют между собой, два луча лазерного света свободно проходят друг через друга, не претерпевая никаких изменений. Но нам удалось создать специальную среду с уникальными условиями, в которой фотоны начинают взаимодействовать между собой настолько сильно, будто бы у них имеется значительная масса. Благодаря этому они объединяются в нечто, что мы назвали фотонными молекулами. Такой вид взаимодействия фотонов существовал в теории уже достаточно давно, но до нас его никто не наблюдал практически" - рассказывает Лукин, - "Конечно, не очень корректно сравнивать новую форму фотонной материи со световыми мечами. Но когда фотонные молекулы взаимодействуют между собой, они или притягиваются или отталкиваются, что проявляется на физическом плане в виде эффектов, которые мы могли видеть в поединках на световых мечах".

Для того, чтобы заставить невесомые фотоны света взаимодействовать друг с другом, ученым не пришлось обращаться к помощи Силы джедаев. Вместо этого они сделали установку, в которой был создан целый ряд уникальных условий и характеристик среды. Все началось с "накачки" вакуумной камеры газом из атомов рубидия, которые затем с помощью света лазера были охлаждены до температуры в несколько градусов выше абсолютного нуля. Затем ученые начали посылать слабые импульсы, практически единичные фотоны света другого лазера в самую гущу облака охлажденных атомов рубидия.

Фотоны света, входя в облако атомов, возбуждают эти атомы, отдавая им часть своей энергии и резко замедляя свое движение. Эта энергия передается от атома к атому со скоростью движения изначального фотона и, в конечном счете, эта энергия покидает пределы облака атомов одновременно с изначальным фотоном.

"Когда фотон покидает облако, все его характеристики остаются такими же, как и до входа в него" - рассказывает профессор Лукин, - "Подобный эффект мы наблюдаем, когда свет преломляется внутри сосуда с водой. Свет входит в воду, отдавая ей часть своей энергии, и в этот момент существует некая субстанция, состоящая из трех компонентов, света, энергии и материи. Но когда свет покидает пределы воды, он возвращается к своему изначальному состоянию. В случае со светом и облаком атомов рубидия все происходит точно также, но эффект проявляется значительно сильней, свет замедляется до более низкой скорости, отдавая большее количество энергии материи, чем это происходит в случае со светом и водой".

Когда ученые стали посылать в недра облака атомов рубидия не по одному фотону, а по несколько, они обнаружили, что эти фотоны покидали пределы облака, сгруппировавшись вместе в единое образование, в фотонную молекулу. В данном случае это происходит за счет влияния эффекта блокады Ридберга (Rydberg blockade). Этот эффект определяет, что когда один атом облака газа возбуждается за счет поступления энергии извне до какого-нибудь энергетического уровня, соседние атомы не могут быть возбуждены до такого же уровня. А на практике это означает, что когда два или больше фотонов синхронно входят в облако атомов, один из фотонов своей энергией возбуждает первый попавшийся атом, замедляя при этом свое движение. За счет блокады Ридберга второй фотон не может отдать энергию даже другим атомам и продолжает двигаться с прежней скоростью, обгоняя первый фотон. Когда второй фотон достигает зоны, свободной от влияния блокады Ридберга, он также отдает попавшемуся атому часть своей энергии и замедляет свое движение. В результате получается почти синхронное движение двух медленных фотонов и двух волн энергии, которые постоянно тянут и толкают друг друга.

"Это взаимодействие между фотонами определяется взаимодействием атомов в облаке" - рассказывает Лукин, - "Оно заставляет фотоны вести себя подобно единой молекуле, и когда фотоны покидают пределы облака, они в большинстве случаев продолжают вести себя как фотонная молекула".

Произведенный учеными эффект, основанный на взаимодействии фотонов света, безусловно, интересен и необычен. Но у него имеется несколько видов практического применения. "Многим может показаться, что мы просто играемся, одновременно раздвигая границы людских познаний" - объясняет Лукин, - "Это совсем не так, фотоны света остаются самым лучшим средством передачи квантовой информации. И одним из препятствий к разработке технологий квантовых вычислений и квантовых коммуникаций было то, что мы не могли заставить фотоны взаимодействовать друг с другом. Теперь нам удалось решить эту проблему".

В дальнейшем ученые собираются применить разработанную ими технологию для создания сложных пространственных структур, подобных кристаллам, состоящих из фотонных молекул, т.е. из чистого света. "Это позволит нам реализовать полностью нематериальную квантово-оптическую систему, содержащую фундаментальные логические элементы, которые можно использовать для обработки и хранения квантовой информации" - рассказывает Лукин, - "Конечно, для реализации этого нам кое-что придется переделать и усовершенствовать, а то, чего мы достигли сейчас, является лишь доказательством работоспособности новых физических принципов".

"Чем наше открытие может быть полезно, мы пока еще не знаем, это станет известно только в будущем. Но это - новый вид материи, точнее ее новая форма, и мы надеемся, что дальнейшие изучения свойств фотонных молекул и фотонных кристаллов укажут нам на области их практического применения".

Экзотическая молекула, существование которой до сих пор было лишь предметом теоретических споров, наконец-то получена международной группой учёных, возглавляемой Верой Бендковски (Vera Bendkowsky) из университета Штутгарта (Universität Stuttgart). Открытие является новым подкреплением квантовой теории, описывающей поведение электронов в необычных условиях.

Новая молекула была «изготовлена» из двух атомов рубидия, один из которых был обычным, а второй — ридберговским атомом . Это означает, что один из электронов его внешней оболочки находился в высоковозбуждённом состоянии.

Ридберговские атомы сами по себе — необычные объекты. Они получаются, когда на электронную оболочку действуют лазерным лучом с определённой длиной волны. Говоря упрощённо, один из электронов ридберговского атома отдаляется от ядра на расстояние намного-намного большее, чем электроны в любом другом атоме, но, однако, продолжает быть связанным с ним.

Крис Грин (Chris Greene), физик-теоретик из университета Колорадо, и ряд его коллег ещё в 1970-х годах предсказали, что между ридберговскими и нормальными атомами возможно взаимодействие с образованием молекул. Но поскольку электрон, обеспечивающий это взаимодействие, крайне отдалён от своего родительского атома, получающаяся химическая связь — необычайно слаба, так что в обычных условиях ридберговская молекула попросту не сможет существовать.

Ещё в 2000 году группа исследователей, в которую входил Крис Грин, высчитала конфигурацию двухатомной ридберговской молекулы рубидия, назвав её трилобитом из-за сходства графического представления её внешней электронной оболочки с древней тварью. На рисунке слева показан этот пространственный график, который отражает вероятность нахождения внешнего валентного электрона в той или иной точке пространства, а справа вы можете увидеть непосредственно трилобита (иллюстрация Greene, Dickinson, Sadeghpour, фото с сайта colorado.edu).

Потребовалось много лет совершенствования техники охлаждения атомов до температуры, близкой к абсолютному нулю, чтобы наконец стало возможным создание такой экзотической молекулы.

Именно это и проделали Бендковски и её коллеги. Вера поясняет: «Ядра атомов должны быть на правильном расстоянии друг от друга, чтобы электронные поля „нашли“ друг друга и начали взаимодействовать. Мы использовали ультрахолодное облако рубидия, в котором по мере снижения температуры атомы газа сближались всё сильнее».

При помощи лазера учёные перевели некоторые из этих атомов в ридберговское состояние. При температуре, очень близкой к нулю, это «критическое расстояние» составило около 100 нанометров.

Эта дистанция между двумя атомами, формирующими молекулу, примерно в 1000 раз больше обычной (десятки и сотни пикометров). Неудивительно, что даже при абсолютном нуле ридберговские молекулы очень нестабильны. Самая долгоживущая из полученных в опыте продержалась 18 микросекунд.

Ещё в 1934 году великий Ферми предсказал, что если один атом встретит «блуждающий» электрон, то сможет взаимодействовать с ним. Но Ферми не дошёл в этом рассуждении до образования молекулы при помощи такого рода сверхслабой связи, поясняет Грин.

Подробности опыта можно найти в

РИДБЕРГОВСКИЕ СОСТОЯНИЯ - состояния атомов, ионов и молекул с большими значениями главного n (высоковозбуждённые состояния). Названы в честь И. Р. Ридберга (J. R. Rydberg), впервые экспериментально исследовавшего атомные спектры вблизи границы .

Р. с. атомов и ионов характеризуются чрезвычайно малыми (по атомным масштабам) ионизац. потенциалами, большими временами жизни (т. к. вероятность излучат. квантовых переходов с них мала) и большими радиусами орбит высоковозбуждённого (ридберговского) электрона. Р. с. подобны состояниям атома водорода. Переходы между соседними Р. с. лежат в радиодиапазоне. Большое значение п позволяет применять для описания Р. с. квазиклассич. приближение и использовать для них понятия классич. механики. Большие размеры орбит и малые энергии связи ридбертовского электрона обусловливают высокую чувствительность Р. с. к воздействию электрич. и магн. полей и большие эфф. сечения взаимодействия атомов в Р. с. с заряженными частицами.

В табл. 1 приведены значения осн. характеристик атомов и атомных ионов, находящихся в Р. с.

Табл. 1 .

Систематич. изучение Р. с. стало возможным с нач. 1970-х гг. благодаря успехам лазерной спектроскопии , позволившей исследовать в лаб. условиях Р. с. с га ~300, а также радиоастрономии, т. к. в межзвёздных облаках были обнаружены линии поглощения между Р. с. с га 700.

Волновые функции и энергии ридберговских состояний атомов. Волновые функции Р. с. с хорошей точностью могут быть представлены как произведение волновых ф-ций ридберговского электрона и оставшейся атомной системы - атомного остатка. Свойства атома в Р. с. в основном определяются волновой ф-цией высоковозбуждённого электрона, к-рая является собств. ф-цией :

где - оператор импульса, U(r ) - потенциальная энергия взаимодействия ридберговского электрона с атомным остатком. При расстояниях r электрона от атомного ядра, много больших размеров атомного остатка, U(r )переходит в кулоновский потенциал: U(r) = Ze 2 /r .

Энергии Р. с. изолиров. атома, отсчитанные от границы ионизации, определяются ф-лой Ридберга:

где М - масса атомного остатка, - квантовый дефект ,слабо зависящий от n и для орбитального квантового числа l > 2 очень быстро уменьшающийся с ростом l . Величины для S-, Р - и D -состояний атомов щелочных металлов приведены в табл. 2.

Табл. 2 .

Вероятности излучат. квантовых переходов атома на Р. с. быстро падают с ростом п и l . Для изолиров. атома в Р. с. с данными га и l время жизни . Если распределение атомов по l термодинамически равновесное [~(2l + 1)] , то вероятность излучат. переходов между Р. с. с n и n" определяется ф-лой Крамерса (с ошибкой менее 20%):

где - энергии уровней, отсчитанные от границы ионизации. Ср. вероятность перехода с данного уровня на все др. уровни энергии есть величина, обратная ср. времени жизни системы на данном уровне.

Ридберговские состояния в электрическом поле принципиально нестационарны - происходит ионизация атома полем. Однако для слабых полей вероятность автоионизации (ионизации полем )экспоненциально мала и Р. с. можно считать квазистационарными. В электрич. поле высоковозбущдённые уровни энергии испытывают штарковское расщепление и сдвиг (см. Штарка эффект ),их волновые ф-ции являются собств. ф-циями гамильтониана:

где H 0 - гамильтониан (1) атома в отсутствие поля. Если потенциальная энергия U(r )имеет кулоновскую природу (т. е. Н 0 - гамильтониан водородоподобного иона), то ур-ние Шрёдингера, соответствующее гамильтониану (4), разделяется в параболич. координатах. Проекция магн. момента на направление поля по-прежнему является интегралом движения. С точностью до второго порядка теории возмущений энергия стационарных состояний, отсчитанная от границы ионизации, даётся выражением

(n 1 , n 2 - параболич. квантовые числа, удовлетворяющие условию: n 1 + n 2 + 1 = n - т, т - магн. квантовое число). Выражение fe-ro порядка теории возмущений приведено в . Ф-ла (5) справедлива и для Р. с. в неводородоподобных атомах, если масштаб штарковского расщепления, определяемый вторым слагаемым, превышает разность энергий между состояниями с разными . На рис. 1 в качестве примера приведена схема уровней Li в электрич. поле.

Рис. 1. Схема уровней энергии атома Li в электрическом поле для n ~ 15 (|m| = 1) .

Вероятность ионизации электрич. полем водородоподобных атомов в Р. с. определяется асимптотич. ф-лой :

Вероятность ионизации атома в Р. с. резко возрастает, когда напряжённость электрич. поля Е приближается к значению , при к-ром возможна автоионизация в рамках классич. механики.

Ридберговские состояния в магнитном поле . В отличие от обычных слабовозбуждённых состояний, для к-рых осн. роль играет парамагн. взаимодействие атома с магн. полем (см. Зеемапа эффект, Пашена - Бака эффект) , для атомов в Р. с. важную роль играет диамагн. взаимодействие, очень быстро растущее с увеличением п. Р. с. в магн. поле описывается гамильтонианом:

где L и S - полный момент и спин атома соответственно, В - магн. индукция, - магнетон Бора, - угол между радиусом-вектором ридберговского электрона и вектором напряжённости магн. поля. Второе слагаемое описывает парамагнитное, третье - диамагнитное взаимодействия. Для Р. с. диамагн. взаимодействие растёт и для высоких п становится определяющим. В слабых полях осн. роль играет второе слагаемое, к-рое даёт расщепление по m-компонентам с характерной величиной, качественно такое же, как и для слабо возбуждённых состояний. С ростом напряжённости поля увеличивается вклад диамагн. взаимодействия, к-рое связывает состояния с одинаковыми m l и. [Для состояния 4p (т = 1) в атоме водорода диамагн. и парамагн. взаимодействия выравниваются при В = 2*10 7 Гс.] Каждый уровень с квантовыми числами п и т расщепляется на компонент. С дальнейшим увеличением напряжённости поля начинают перемешиваться уровни с разными п и спектр водорода в магн. поле (рис. 2) становится похожим на спектр атома в электрич. поле. В случае предельно сильных полей осн. роль играет взаимодействие с магн. полем и Р. с. являются состояниями Ландау (см. Ландау уровни ).,Кулоновское взаимодействие при этом можно рассматривать как возмущение.

Рис. 2. Схема уровней энергии атома H в ридберговских состояниях в магнитном поле (т = 1, чётные состояния) .

Взаимодействие атомов в ридберговском состоянии с заряженными частицами . Эфф. сечения s квантовых переходов в атомах, находящихся в Р. с. при столкновениях с заряженными частицами (электронами, ионами), растут как геом. сечение ~n 4 . Для переходов с малыми осн. роль играет дальнодействующее дипольное взаимодействие, к-рое приводит к , а при больших энергиях внеш. частицы зависимость от энергии даётся множителем (квантовый логарифм!). С ростом всё большую роль начинает играть короткодействующее взаимодействие, позволяющее пренебречь полем атомного остатка в процессе столкновения, а само столкновение рассматривать в рамках классич. механики. Этот подход, называемый классич. бинарным приближением, позволяет получить; при больших энергиях. В приближении Борна сечение перехода при столкновении с электронами определяется ф-лой (3):

Ф-ция для п = 100 приводится в табл. 3.

Т а б л. 3 .

Переходы между Р. с. при столкновениях с электронами являются осн. причиной дополнительного (помимо доплеровского) неупругого уширения рекомбинационных радиолиний , наблюдаемых от ряда астрофиз. объектов (планетарных туманностей, межзвёздной среды, зон НИ и т. д.).

В столкновит. переходах между Р. с. с одинаковым п осн. роль, как правило, играют ионы. Наиб. велики сечения для переходов между соседними уровнями , обусловленные дипольным взаимодействием. Они на порядок и более превосходят геом. сечение

Взаимодействие атомов в ридберговском состоянии с нейтральными атомами . Если п достаточно велико, то сечение процесса взаимодействия атомов в Р. с. с нейтральными атомами выражается через амплитуду рассеяния свободного электрона на нейтральном атоме и амплитуду рассеяния атома на положительно заряженном атомном остатке. Напр., в результате взаимодействия с нейтральными атомами Р. с. испытывают уширение и сдвиг, пропорциональные концентрации возмущающих частиц N:

коэф. выражаются через амплитуду упругого рассеяния электрона на атоме и параметры взаимодействия нейтрального атома с атомным остатком и для достаточно больших п стремятся к константам; в промежуточной области их поведение может быть весьма сложным и зависит от конкретного вида возмущающих частиц. Для атомов Cs в Р. с., возмущаемых, напр., атомами Аг, асимптотич. значения ,; если возмущающими атомами являются атомы Cs, то увеличивается в 20 раз, а - на 2 порядка. Асимитотич. значений коэф. и достигают при взаимодействии с атомами инертных газов при , а при взаимодействии с атомами щелочных металлов при . Поведение сечений др. процессов взаимодействия атомов в Р. с. с нейтральными атомами (перемешивание состояний по l, дезориентация и др.) качественно аналогично поведению сечений уширения.

Лабораторные эксперименты. Р. с. в лаб. условиях создаются чаще всего возбуждением атома из осн. состояния одним или неск. световыми пучками большой интенсивности (по крайней мере на первом этапе возбуждения - накачке). Для накачки обычно используется N 2 -лазер или вторая (третья) гармоника лазера на неодимовом стекле. Чтобы получать Р. с. с заданными квантовыми числами п, l, т , на втором этапе атомную систему возбуждают излучением мощных перестраиваемых лазеров на красителях.

Для регистрации Р. с. наиб. распространение получили флуоресцентный метод и метод ионизации электрич. полем. Флуоресцентный метод основан на анализе каскадного испускания света при переходах атома из Р. с. Этот метод обладает селективностью, однако интенсивность регистрируемого излучения в видимой области в этом случае мала. Флуоресцентный метод используют, как правило, для исследования Р. с. с п < 20.

В методе ионизации электрич. полем регистрируются электроны, освобождающиеся в результате ионизации атома в Р. с. при воздействии на него электрич. поля. В этом случае селективность обеспечивается чрезвычайно резкой зависимостью вероятности ионизации от квантовых чисел п и т . Чаще всего этот метод используется в режиме с временным разрешением: после импульсного возбуждения Р. с. подаётся пилообразный импульс электрич. поля. Каждое Р. с. в разрешённом по времени ионизац. сигнале даёт пик через строго определённое время от момента включения поля. Метод отличается простотой, высокой чувствительностью и в отличие от флуоресцентного метода особенно эффективен при исследовании Р. с. с большими п , когда для ионизации не требуется высоких напряжений электрич. полей.

Спектры атомов и ионов в Р. с. исследуются разл. методами. С помощью обычных многомодовых лазеров достигается спектральное разрешение порядка доплеровской ширины уровня, что позволяет исследовать Р. с. с . Если требуется более высокое разрешение, то используют метод скрещенных атомно-лазерных пучков, дающий разрешение в несколько Мгц, или методы нелинейной лазерной спектроскопии. Напр., методом двухфотонной спектроскопии был получен спектр с разрешением порядка Кгц. В тех случаях, когда интерес представляют интервалы между соседними Р. с., более удобны методы радиоспектроскопии , , квантовых биений и пересечения уровней (см. Интерференция состояний ). Вместо настройки частоты излучения на частоту перехода между Р. с., на заданную внеш. полем частоту можно настраивать сами Р. с. В этом случае Р. с. позволяют усиливать слабый микроволновый сигнал. Этим методом получена чувствительность в миллиметровом диапазоне; есть основания ожидать повышение чувствительности ещё на 2 порядка.

Особый интерес представляют эксперименты с атомами в Р. с. в резонаторах. Для п ~ 30 переходы между Р.. с. лежат в миллиметровом диапазоне, для к-рого существуют резонаторы с очень высокой . В то же время влияние электрич. поля на атомы в Р. с. более значительно, чем, напр., для молекулярных вращат. уровней энергии, поэтому с помощью Р. с. впервые удалось продемонстрировать ряд эффектов квантовой , предсказанных в 50- 60-е гг.: подавление спонтанного радиац. перекода в резонаторе, нутацию Раби - взаимодействие с полек одного фотона в , кооперативные эффекты Дикке для неск. атомов (см. Сверхизлучение )и др. .

Астрофизические приложения ридберговских состояний. Первые наблюдения излучат, переходов между Р. с. от астрофиз. объектов (линии и) были выполнены в СССР . Радиолинии излучения, соответствующие переходам между Р. с., наблюдаются вплоть до п ~ 300 от галактич. зон Н II, планетарных туманностей, центральных областей нашей Галактики и нек-рых др. галактик. Обнаружены также линии Не, Не II, С II. Осн. механизмом образования Р. с. в астрофиз. объектах является фоторекомбинация, поэтому радиолинии излучения наз. также рекомбинац. радиолиниями. Радиолинии между Р. с. играют важную роль в диагностике астрофиз. объектов. Для п < 100 ширина таких линий обусловлена и позволяет судить о ионной темп-ре космич. плазмы. Для более высоких п в уширение вносят вклад столкновения с электронами, и т. о. по ширине радиолиний можно оценить также электронов. Отношение интенсивностей радиолиний и континуума даёт электронную темп-ру.

В межзвёздных облаках обнаружены радиолинии поглощения, принадлежащие иону С II и соответствующие переходам между Р. с. с п > 700.

Лит.: 1) R у d b е r g J. R., «Z. Phys. Chem.», 1890, Bd 5, S. 227; 2) Ридберговские состояния атомов и молекул, пер. с англ., М., 1985; 3) Вайнштейн Л. А., Собельман И. И., Ю к о в Е. А., Возбуждение атомов и , М., 1979; 4) Нагое he S., Raimond J. M., «Adv. in Atom. and Molec. Phys.», 1985, v. 20, p. 347; 5) Сороченко Р. Л., Рекомбинациошше радиолинии, в кн.: Физика космоса, 2 изд., М., 1986. И. Л. Бейгман ,

Ридберговские состояния молекул . Высоковозбуждённые электронные состояния М., так же как и атомные, подобны серии состояний атома водорода. Ридберговские орбитали молекул обозначаются главным п и орбитальным l квантовыми числами и типом группы симметрии молекулы (напр., nsa 1 , npb 1) . Энергия Р. с. (отсчитываемая от границы ионизации молекул) определяется ф-лой Ридберга (2). Для молекулы, состоящей из атомов первого периода, величина квантового дефекта для nd -орбиталей очень мала (0,1), для -орбиталей несколько выше (0,3-0,5), а для ns -орбиталей значительно больше (0,9-1,2). Стабильность Р. с. молекул зависит от стабильности осн. состояния или низколежащего возбуждённого состояния молекулярного иона, получающегося при удалении ридберговского электрона, т. к. ридберговская орбиталь, вообще говоря, является несвязывающей. Стабильность иона зависит от того, удаляется ли электрон со связывающей, разрыхляющей или несвязывающей молекулярной орбитали осн. состояния нейтральной молекулы. Напр., для Н 2 О из занятых молекулярных орбиталей в оси. состоянии самой верхней является несвязывающая молекулярная орбиталь 1b 1 . Поэтому осн. состояние иона Н 2 О + , получающегося при удалении электрона с этой орбитали, столь же стабильно, как и осн. состояние молекулы Н 2 О: практически все Р. с. молекулы Н 2 О, сходящиеся к осн. состоянию иона Н 2 O + , стабильны.

Если электрон переходит с низколежащей на более высокую молекулярную орбиталь с тем же п , то получающиеся состояния наз. субридберговским и. Т. к. п не является вполне определённым квантовым числом для низких молекулярных орбиталей, субридберговские состояния мало отличаются от Р. с. молекул, хотя субридберговские орбитали могут быть и связывающими.

Р. с. молекул отличаются от Р. с. атомов гл. обр. благодаря колебаниям, вращениям и возможности диссоциации ионного остова молекулы. Если ионный остов находится в возбуждённом колебат. состоянии, то ридберговский электрон при проникновении в ионный остов (что происходит довольно редко, с вероятностью) может испытать неупругое столкновение с остовом, приобрести достаточную кинетич. энергию за счёт колебат. энергии остова и привести к ионизации молекулы, наз. колебательной автоионизацией. Процесс автоионизации возможен также за счёт вращения. Высоковозбуждённые Р. с. молекул обычно лежат так близко, что энергетич. интервал между ними бывает такого же порядка или даже меньше, чем квант колебат. или вращат. энергии молекулы. Поэтому часто разделение электронного и ядерного движений, принятое в приближении Берна - Оппенгеймера, для молекул в Р. с. становится непригодным.

Лит.: Герцберг Г., Электронные спектры и строение многоатомных молекул, пер. с англ., М., 1969; Ридберговские состояния атомов и молекул, под ред. Р. Стеббингса, Ф. Данвинга, пер. с англ., М., 1985. М. Р. Алиев .



План:

    Введение
  • 1 Свойства ридберговских атомов
    • 1.1 Дипольная блокада ридберговских атомов
  • 2 Направления исследования и возможные применения
  • Примечания

Введение

Ри́дберговские а́томы (названы в честь Й. Р. Ридберга) - атомы щелочных металлов, у которых внешний электрон находится в высоковозбужденном состоянии (вплоть до уровней n ~ 100 ). Для перевода атома из основного в возбужденное состояние его облучают резонансным лазерным светом или инициируют радиочастотный разряд. Размер ридберговского атома значительно превышает размер того же самого атома находящегося в основном состоянии почти в 10000 раз для n=100, (см. ниже таблицу).


1. Свойства ридберговских атомов

Электрон, вращающийся на орбите радиуса r вокруг ядра, по второму закону Ньютона испытывает силу:

где k = 1/(4πε 0), e - заряд электрона.

Орбитальный момент в единицах ħ равен:

.

Из этих двух уравнений получим выражение для орбитального радиуса электрона, находящегося в состоянии "n"

Схема лазерного возбуждения атома рубидия в ридберговское состояние

Энергия связи такого водородоподобного атома равна

где Ry = 13.6 эВ есть постоянная Ридберга, а δ дефект заряда ядра, который при больших n несущественен. Разница энергий между n -м и n+1 -м уровнями энергии примерно равна

Характерный размер атома r n и типичный квазиклассический период обращения электрона равны

где a B = 0.5×10 −10 м - боровский радиус, а T 1 ~ 10 −16 с .

Сравним некоторые числа основного и ридберговского состояний атома водорода .


1.1. Дипольная блокада ридберговских атомов

При возбуждении атомов из основного состояния в ридберговское происходит интересное явление получившие название дипольная блокада. В рязряженном атомном паре расстояние между атомами, находящимся в основном состоянии, велико и взаимодействия между атомами практически нет. Однако, при возбуждении атомов в ридберговское состояние их радиус орбиты увеличивается в n 2 до ~1 мкм. В результате атомы "сближаются", взаимодействие между ними значительно увеличивается, что вызывает смещение энергии состояний атомов. К чему это приводит? Предположим, что слабым импульсом света удалось возбудить только один атом из основного в риберговское состояние. Попытка заселить тот же уровень другим атомом из-за "дипольной блокады" становится заведомо невозможной .


2. Направления исследования и возможные применения

Исследования, связанные с ридберговскими состояниями атомов можно условно разбить на две группы: изучение самих атомов и использование их свойств для прочих целей.

Фундаментальные направления исследования:

  • Из нескольких состояний с большими n можно составить волновой пакет, который будет более-менее локализован в пространстве. Если при этом большим будет и орбитальное квантовое число, то мы получим почти классическую картинку: локализованное электронное облако вращается вокруг ядра на большом расстоянии от него.
  • Если орбитальный момент мал, то движение такого волнового пакета будет квази-одномерным : электронное облако будет удаляться от ядра и снова приближаться к нему. Это аналог сильно вытянутой эллиптической орбиты в классической механике при движении вокруг Солнца.
  • Поведение ридберговского электрона во внешних электрических и магнитных полях. Обычные электроны, находящиеся близко к ядру, в основном чувствуют сильное электростатическое поле ядра (порядка 10 9 В/см ), а внешние поля для них играют роль лишь мелких добавок. Ридберговский электрон чувствует сильно ослабленное поле ядра (E ~ E 0 /n 4 ), и потому внешние поля могут кардинально исказить движение электрона.
  • Интересными свойствами обладают атомы с двумя ридберговскими электронами, причем один электрон «крутится» вокруг ядра на большем расстоянии, чем другой. Такие атомы называются планетарными .
  • По одной из гипотез, из ридберговского вещества состоит шаровая молния.

Необычные свойства ридберговских атомов уже находят свои применения

  • Квантовые детекторы радиоизлучения: ридберговские атомы могут зарегистрировать даже единичный фотон в радиодиапазоне, что далеко за пределами возможностей обычных антенн.
  • Ступенчатый спектр энергий ридберговского электрона служит «энергетическим разновесом», который можно использовать при аккуратном измерении энергий.
  • Ридберговские атомы наблюдаются также и в межзвездной среде. Они являются очень чувствительными датчиками давления, созданным для нас самой природой.

В 2009 году исследователями из университета Штутгарта удалось получить Ридберговскую молекулу .


Примечания

  1. W. Demtroder Laser Spectroscopy: Basic Concepts & Instrumentation. - Springer, 2009. - 924 с. - ISBN 354057171X
  2. R. Heidemann et al. (2007). «Evidence for Coherent Collective Rydberg Excitation in the Strong Blockade Regime - link.aps.org/abstract/PRL/v99/e163601». Physical Review Letters 99 (16): 163601. DOI:10.1103/PhysRevLett.99.163601 - dx.doi.org/10.1103/PhysRevLett.99.163601. arΧiv:quant-ph/0701120 - arxiv.org/abs/quant-ph/0701120.
  3. Cohesion in ball lightning - scitation.aip.org/journals/doc/APPLAB-ft/vol_83/iss_11/2283_1.html
  4. membrana.ru «Впервые в мире получена молекула Ридберга» - www.membrana.ru/lenta/?9250

Команда физиков из Центра ультрахолодных атомов при Гарвардском университете и Массачусетском технологическом институте (Harvard-MIT Center for Ultracold Atoms) под руководством нашего соотечественника Михаила Лукина получила ранее невиданный тип материи.

Это вещество, по словам авторов исследования, противоречит представлениям учёных о природе света. Фотоны считаются безмассовыми частицами, неспособными взаимодействовать друг с другом. Например, если направить два лазерных луча друг на друга, то они просто пройдут насквозь, никак не взаимодействуя между собой.

Но на этот раз Лукину и его команде удалось экспериментально опровергнуть это убеждение. Они заставили частицы света образовать друг с другом прочную связь и даже собираться в молекулы. Ранее такие молекулы были только в теории.
"Фотонные молекулы ведут себя не как обычные лазерные лучи, а как нечто близкое к научной фантастике - джедайские световые мечи, например", - заявляет Лукин.
"Большинство описанных свойств света исходят из убеждения об отсутствии массы у фотонов. Именно поэтому они никак не взаимодействуют друг с другом. Всё, что мы сделали, это создали особую среду, в которой частицы света взаимодействуют друг с другом так сильно, что начинают вести себя, как если бы у них была масса, и формируются в молекулы", - поясняет физик.
В создании фотонных молекул, а точнее, среды, пригодной для их формирования, Лукин и его коллеги не могли рассчитывать на Силу. Им пришлось провести сложный эксперимент с точными расчётами, но абсолютно поразительными результатами.
Для начала исследователи поместили атомы рубидия в вакуумную камеру и использовали лазеры, чтобы охладить атомное облако всего до нескольких градусов выше абсолютного нуля. Затем, создавая очень слабые лазерные импульсы, учёные направляли в рубидиевое облако по одному фотону.
"Когда фотоны входят в облако холодных атомов, их энергия заставляет атомы переходить в возбуждённое состояние. В результате частицы света замедляются. Фотоны движутся сквозь облако, а энергия передаётся от атома к атому до тех пор, пока не покинет среду вместе с самим фотоном. При этом состояние среды сохраняется таким же, каким было до "посещения" фотона", - рассказывает Лукин.

Авторы исследования сравнивают этот процесс с преломлением света в стакане воды. Когда луч проникает в среду, то отдаёт ей часть своей энергии и внутри стакана он представляет собой "связку" между светом и материей. Но, выходя из стакана, он всё также является светом. Практически тот же процесс имеет место в эксперименте Лукина. Физическая разница лишь в том, что свет сильно замедляется и отдаёт больше энергии, чем при обычном преломлении в стакане с водой.
На следующем этапе эксперимента учёные отправили в рубидиевое облако два фотона. Каково же было их удивление, когда они поймали на выходе два связанных в молекулу фотона. Это можно назвать единицей невиданного ранее вещества. Но в чём причина такой связи?
Эффект был описан ранее теоретически и носит название блокады Ридберга. Согласно этой модели, при возбуждении одного атома другие соседние атомы не могут перейти в то же самое возбуждённое состояние. На практике это означает, что при вхождении двух фотонов в облако из атомов, первый будет возбуждать атом и продвигаться вперёд, прежде чем второй фотон возбудит соседние атомы.
В результате два фотона будут толкать и тянуть друг друга, проходя через облако, пока их энергия передаётся от одного атома к другому.
"Это фотонное взаимодействие, которое опосредованно взаимодействием атомным. Благодаря этому два фотона будут вести себя как одна молекула, нежели как две отдельные частицы, на выходе из среды", - поясняет Лукин.
Авторы исследования признаются, что провели этот эксперимент больше для забавы, чтобы проверить на прочность фундаментальные границы науки. Однако у такого удивительного открытия может быть масса практических применений.

К примеру, фотоны являются оптимальным носителем квантовой информации, проблемой был лишь тот факт, что частицы света не взаимодействуют друг с другом. Чтобы построить квантовый компьютер, необходимо создать систему, которая будет хранить единицы квантовой информации и обрабатывать её с помощью квантовых логических операций.
Проблема состоит в том, что такая логика требует взаимодействия между отдельными квантами таким образом, чтобы системы переключались и выполняли обработку информации.
"Наш эксперимент доказывает, что это возможно. Но перед тем, как мы займёмся созданием квантового переключателя или фотонного логического вентиля, нам необходимо улучшить производительность фотонных молекул", - говорит Лукин. Таким образом, нынешний результат лишь доказательство работы концепции на практике.
Открытие физиков будет полезно и в производстве классических компьютеров и вычислительных машин. Оно поможет решить ряд проблем, связанных с потерями мощности, с которыми сталкиваются производители компьютерных чипов.
Если говорить о далёком будущем, то однажды последователи Лукина смогут, вероятно, создать трёхмерную структуру, вроде кристалла, состоящую полностью из света.
Описание эксперимента и выводы учёных можно почитать в статье Лукина и его коллег, опубликованной в журнале Nature.