Составление параметрического уравнения прямой. Параметрические уравнения прямой

Обязательно прочитайте данный параграф! Параметрические уравнения, конечно, не альфа и омега пространственной геометрии, но рабочий муравей многих задач. Причём, этот вид уравнений часто применяется неожиданно, и я бы сказал, изящно.

Если известна точка , принадлежащая прямой, и направляющий вектор данной прямой, то параметрические уравнения этой прямой задаются системой :

О самом понятии параметрических уравнений я рассказывал на уроках Уравнение прямой на плоскости и Производная параметрически заданной функции .

Всё проще пареной репы, поэтому придётся приперчить задачу:

Пример 7

Решение : Прямые заданы каноническими уравнениями и на первом этапе следует найти какую-нибудь точку, принадлежащую прямой, и её направляющий вектор.

а) Из уравнений снимаем точку и направляющий вектор: . Точку можно выбрать и другую (как это сделать – рассказано выше), но лучше взять самую очевидную. Кстати, во избежание ошибок, всегда подставляйте её координаты в уравнения.

Составим параметрические уравнения данной прямой:

Удобство параметрических уравнений состоит в том, что с их помощью очень легко находить другие точки прямой. Например, найдём точку , координаты которой, скажем, соответствуют значению параметра :

Таким образом:

б) Рассмотрим канонические уравнения . Выбор точки здесь несложен, но коварен: (будьте внимательны, не перепутайте координаты!!!). Как вытащить направляющий вектор? Можно порассуждать, чему параллельна данная прямая, а можно использовать простой формальный приём: в пропорции находятся «игрек» и «зет», поэтому запишем направляющий вектор , а на оставшееся место поставим ноль: .

Составим параметрические уравнения прямой:

в) Перепишем уравнения в виде , то есть «зет» может быть любым. А если любым, то пусть, например, . Таким образом, точка принадлежит данной прямой. Для нахождения направляющего вектора используем следующий формальный приём: в исходных уравнениях находятся «икс» и «игрек», и в направляющем векторе на данных местах записываем нули : . На оставшееся место ставим единицу : . Вместо единицы подойдёт любое число, кроме нуля.

Запишем параметрические уравнения прямой:

Для тренировки:

Пример 8

Составить параметрические уравнения следующих прямых:

Решения и ответы в конце урока. Полученные вами ответы могут несколько отличаться от моих ответов, дело в том, что параметрические уравнения можно записать не единственным способом . Важно, чтобы ваши и мои направляющие векторы были коллинеарны, и ваша точка «подходила» к моим уравнениям (ну, или наоборот, моя точка к вашим уравнениям).



Как ещё можно задать прямую в пространстве? Хочется что-нибудь придумать с вектором нормали. Однако номер не пройдёт, у пространственной прямой нормальные векторы могут смотреть совершенно в разные стороны.

Ещё об одном способе уже упоминалось на уроке Уравнение плоскости и в начале этой статьи.

Пусть прямая проходит через точку M1 (x1, y1, z1) и параллельна вектору (m ,n, l). Составим уравнение этой прямой.

Возьмем произвольную точку M (x, y, z) на этой прямой и найдем зависимость между x, y, z. Построим вектор

Векторы иколлинеарны.

- каноническое уравнение прямой в пространстве.

44 Параметрические уравнения прямой

Т.к. этому уравнению удовлетворяют координаты любой точки прямой, то полученное уравнение – параметрическое уравнение прямой.

Это векторное уравнение может быть представлено в координатной форме:

Преобразовав эту систему и приравняв значения параметра t, получаем канонические уравнения прямой в пространстве:

Определение. Направляющими косинусами прямой называются направляющие косинусы вектора , которые могут быть вычислены по формулам:

Отсюда получим: m: n: p = cosa: cosb: cosg.

Числа m, n, p называются угловыми коэффициентами прямой. Т.к.- ненулевой вектор, то m, n и p не могут равняться нулю одновременно, но одно или два из этих чисел могут равняться нулю. В этом случае в уравнении прямой следует приравнять нулю соответствующие числители.

45 Уравнение прямой в пространстве, проходящее через две различные данные точки.

Аналитическая геометрия

Уравнение прямой, проходящей через две данные точки.

Пусть на плоскости даны М1(х1у1) и М2(х2у2). Составим каноническое уравнение прямой, проходящей через эти две точки в качестве направляющего вектора S возьмем M1M2

тройка.

Это уравнение прямой, проходящей через две данные точки (х1 у1) и (х2, у2)

Перейдем теперь к уравнениям прямой и плоскости в пространстве.

Аналитическая геометрия в 3-мерном пространстве

Аналогично двумерному случаю любое уравнение первой степени относительно трех переменных x, y, z есть уравнение плоскости в пространстве Оxyz.. Общее уравнение плоскости АX + ВY + СZ + D = 0, где вектор N=(A,B,C) есть нормаль к плоскости. Каноническое уравнение плоскости, проходящей через точку М(х0,у0,z0) и имеющей нормаль N(А,В,С) А(х – х0) + В(у – у0) + С(z – z0)=0 – что представляет собой это уравнение?

Значения х –х0, у-у0 и z –z0 - это разности координат текущей точки и фиксированной точки. Следовательно, вектор а (х-х 0, у-у0, z-z0) -это вектор, лежащий в описываемой плоскости, а вектор N - вектор, перпендикулярный к плоскости, а значит, они перпендикулярны между собой.

Тогда их скалярное произведение должно равняться нулю.

В координатной форме (N,a)=0 выглядит так:

А·(х-х0)+В·(у-у0)+С·(z-z0)=0

В пространстве различают правые и левые тройки векторов. Тройка некомпланарных векторов а, b, с называется правой, если наблюдателю из их общего начала обход концов векторов a, b, с в указанном порядке кажется совершающимся по часовой стрелке. В противном случае a,b,c - левая.

46 Угол между прямыми в пространстве

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.

Пусть в пространстве заданы две прямые:

Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами и. Так как, то по формуле для косинуса угла между векторами получим

Условия параллельности и перпендикулярности двух прямых равносильны условиям параллельности и перпендикулярности их направляющих векторов и:

Две прямые параллельны тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, т.е. l1 параллельна l2 тогда и только тогда, когда параллелен.

Две прямые перпендикулярны тогда и только тогда, когда сумма произведений соответствующих коэффициентов равна нулю: .

Найти уравнения прямой проходящей через точку М1(1;2;3) параллельно прямой l1:

Поскольку искомая прямая l параллельна l1, то в качестве направляющего вектора искомой прямой l можно взять направляющий вектор прямой l1.

Лекция № 7

Плоскость и прямая в пространстве

проф. Дымков М.П.

1. Параметрическое уравнение прямой

Пусть даны точка M 0 (x 0 , y 0 , z 0 ) на прямой и вектор s = (l ,m ,n ) , лежащий на

этой прямой (или ей параллельной). Вектор s называют еще направляющим вектором прямой .

Этими условиями однозначно определяется прямая в пространстве. Найдем ее

уравнение. Возьмем произвольную точку M (x , y , z ) на прямой. Ясно, что векторы

M 0 M (x − x 0 , y − y 0 , z − z 0 ) и s коллинеарны.

Следовательно, M 0 M = t s − есть векторное уравнение прямой.

В координатной записи последнее уравнение имеет следующее параметрическое представление

x = x0 + t l ,

y = y0 + tm ,

z = z0 + tn ,

−∞ < t < +∞,

где t – «пробегает»

промежуток (−∞ ,∞ ) ,

(т.к. точка M (x , y , z ) должна

«пробегать»

всю прямую).

2. Каноническое уравнение прямой

Исключив параметр t из предыдущих уравнений, имеем

x − x

y − y

z − z

T −

каноническое уравнение прямой.

3. Угол между прямыми. Условия « » и « » двух прямых

Пусть даны д ве прямые

x − xi

y − yi

z − zi

i = 1,2.

Определение.

Углом между прямыми L 1 и L 2

назовем любой угол из

двух углов, образованными двумя прямыми, соответственно параллельными данной и проходящими через одну точку (для чего возможно требуется совершить параллельный перенос одной из прямых).

Из определения следует, что один из углов равен углу ϕ между

направляющими векторами прямых

= (l 1 ,m 1 ,n 1 )

= (l 2 ,m 2 ,n 2 ) , [а второй угол

тогда будет равен (π − φ ) ]. Тогда угол определяется из соотношения

cosφ =

l 1 2 + m 1 2 + n 1 2

l 2 2 + m 2 2 + n 2 2

Прямые параллельны , если s и s

коллинеарны

Прямые перпендикулярны s 1 s 2 l 1 l 2 + m 1 m 2 + n 1 n 2 = 0 .

4. Угол между прямой и плоскостью. Условия « » и « » прямой и

плоскости

Пусть прямая L задана своим каноническим уравнением x − l x 0 = y − m y 0 = z − n z 0 ,

а плоскость P – уравнением

Ax + By + Cz + D = 0.

Определение. Углом между прямой L

и плоскостью р называется острый угол между прямой L и ее проекцией на плоскость.

Из определения (и рисунка) следует, что искомый угол ϕ является дополнительным (до прямого угла) к углу между вектором нормали n (A , B ,C ) и

направляющим вектором s (l ,m ,n ) .

Al + Bm + Cn

−φ

Sin φ =

A 2 + B 2 + C 2 l 2 + m 2 + n 2

(. берется, чтобы получить острый угол).

Если L Р , то тогда s n (s ,n ) = 0

Al + Bm + Cn = 0 −

условие « ».

Если L Р , то тогда s коллинеарно n

C −

условие « ».

5. Точки пересечения прямой и плоскости

L : x = x0 + l , t ,

y = y0 + m t , z = z0 + n t ;

P : Ax + By + Cz + D = 0 .

Подставив выражения для х , у , z в уравнение плоскости и преобразовав,

t = − Ax 0 + By 0 + Cz 0 + D .

Al + Bm + Cn

Теперь, если подставить найденное «t » в параметрические уравнения прямой, то найдем искомую точку пересечения

Лекция № 8-9

Основы математического анализа

проф. Дымков М.П.

Одной из основных операций математического анализа является операция предельного перехода, которая встречается в курсе в различных формах. Мы начнем с самой простейшей формы операции предельного перехода, основанной на понятии предела так называемой числовой последовательности. Это облегчит нам введение и другой весьма важной формы операции предельного перехода – предела функции. В последующем конструкции предельных переходов будут использоваться в построении дифференциального и интегрального исчисления.

Бесконечно малые и бесконечно большие последовательности

Связь бесконечно больших и бесконечно малых последовательностей.

Простейшие свойства бесконечно малых последовательностей

Предел последовательности.

Свойства сходящихся последовательностей

Арифметические операции над сходящимися последовательностями

Монотонные последовательности

Критерий сходимости Коши

Число е и его экономическая иллюстрация.

Применение пределов в экономических расчетах

§ 1. Числовые последовательности и простейшие свойства

1. Понятие числовой последовательности. Арифметические операции над последовательностями

Числовые последовательности представляют собой бесконечные множества чисел. Примеры последовательностей известны из школы:

1) последовательность всех членов бесконечной арифметической и геометрической прогрессий;

2) последовательность периметров правильных n -угольников, вписанных в данную окружность;

3) последовательность чисел

приближающих число

будем называть числовой последовательностью (или просто последовательностью).

Отдельные числа x 3 , x 5 , x n будем называть элементами или членами последовательности (1). Символ x n называют общим или n -м членом данной последовательности. Придавая значение n = 1, 2, … в общем члене x n мы получаем, соответственно, первый x 1 , второй x 2 и т.д. члены.

Последовательность считается заданной (см. Опр.), если указан способ получения любого ее элемента. Часто последовательность задают формулой для общего члена последовательности.

Для сокращения записи последовательность (1) иногда записывают как

{ x n } . Например,

означает последовательность 1,

{ 1+ (− 1)n } имеем

0, 2, 0, 2, … .

Структура общего члена (его формула) может быть сложной. Например,

n N.

x n =

n-нечетное

Иногда последовательность задается так называемыми рекуррентными формулами , т.е. формулами, позволяющими находить последующие члены последовательности по известным предыдущим.

Пример (числа Фибоначчи). Пусть x 1 = x 2 = 1 и задана рекуррентная формула x n = x n − 1 + x n − 2 для n = 3, 4, … . Тогда имеем последовательность 1, 1,

2, 3, 5, 8, … (числа Леонардо из Пизы по прозвищу Фибоначчи). Геометрически числовую последовательность можно изобразить на чис-

ловой оси в виде последовательности точек, координаты которых равны соот-

ветствующим членам последовательности. Например, { x n } = 1 n .

Лекция № 8-9 Основы математического анализа проф. Дымков М.П. 66

Рассмотрим наряду с последовательностью { x n } еще одну последовательность { y n } : y 1 , y 2 , y ,n (2).

Определение. Суммой (разностью, произведением, частным) последо-

вательностей { xn } и { yn } называется последовательность { zn } , члены кото-

образованы по

z n = x n + y n

X − y

≠ 0

Произведением последовательности { xn } на число c R называется последовательность { c xn } .

Определение. Последовательность { xn } называется ограниченной

сверху (снизу), если существует вещественное число М (m), такое что каждый элемент этой последовательности xn удовлетворяет неравен-

ству xn ≤ M (xn ≥ m) . Последовательность называется ограниченной, если она ограничена и сверху и снизу m ≤ xn ≤ M . Последовательность xn называ-

ется неограниченной, если для положительного числа А (сколь угодно большего) найдется хотя бы один элемент последовательности xn , удовлетворя-

ющий неравенству xn > A.

{ x n } = { 1n } − ограничена, т.к. 0 ≤ x n ≤ 1.

{ x n } = { n } − ограничена снизу 1, но является неограниченной.

{ x n } = { − n } − ограничена сверху (–1), но также неограниченная.

Определение. Последовательность { x n } называется бесконечно малой ,

если для любого положительного вещественного числа ε (сколь бы малым его не взяли) существует номер N , зависящий, вообще говоря от ε , (N = N (ε )) такой, что при всех n ≥ N выполняется неравенство x n < ε .

Пример. { x n } = 1 n .

Определение. Последовательность { xn } называется бесконечно боль-

шой , если для положительного вещественного числа А (какое бы большое оно не было) найдется номер N (N = N(A)) такой, что при всех n ≥ N выпол-

няется неравенство xn > A.

Прямая вместе с точкой являются важными элементами геометрии, с помощью которых строятся многие фигуры в пространстве и на плоскости. В данной статье подробно рассматривается параметрическое а также его связь с другими типами уравнений для этого геометрического элемента.

Прямая и уравнения для ее описания

Прямая в геометрии представляет собой совокупность точек, которые соединяют произвольные две точки пространства отрезком с наименьшей длиной. Этот отрезок является частью прямой. Любые другие кривые, соединяющие зафиксированные две точки в пространстве, будут иметь большую длину, поэтому прямыми не являются.

На рисунке выше показаны две черные точки. Синяя линия, соединяющая их, является прямой, а красная - кривой. Очевидно, что длина красной линии между черными точками больше, чем синей.

Существуют несколько видов уравнений прямой, с помощью которых можно описать прямую в трехмерном пространстве или в двумерном. Ниже приведены названия этих уравнений:

  • векторное;
  • параметрическое;
  • в отрезках;
  • симметричное или каноническое;
  • общего типа.

В данной статье рассмотрим параметрическое уравнение прямой, однако выведем его из векторного. Также покажем связь параметрического и симметричного или канонического уравнений.

Уравнение векторное

Понятно, что все приведенные типы уравнений для рассматриваемого геометрического элемента связаны между собой. Тем не менее векторное уравнение является базовым для всех них, поскольку оно непосредственно следует из определения прямой. Рассмотрим, как оно вводится в геометрию.

Допустим, дана точка в пространстве P(x 0 ; y 0 ; z 0). Известно, что эта точка принадлежит прямой. Сколько прямых можно провести через нее? Бесконечное множество. Поэтому для того, чтобы можно было провести единственную прямую, необходимо задать направление последней. Направление, как известно, определяется вектором. Обозначим его v¯(a; b; c), где символы в скобках - это его координаты. Для каждой точки Q(x; y; z), которая находится на рассматриваемой прямой, можно записать равенство:

(x; y; z) = (x 0 ; y 0 ; z 0) + α × (a; b; c)

Здесь символ α является параметром, принимающим абсолютно любое действительное значение (умножение вектора на число может изменить только его модуль или направление на противоположное). Это равенство называется векторным уравнением для прямой в трехмерном пространстве. Изменяя параметр α, мы получаем все точки (x; y; z), которые образуют эту прямую.

Стоящий в уравнении вектор v¯(a; b; c) называется направляющим. Прямая не имеет конкретного направления, а ее длина является бесконечной. Эти факты означают, что любой вектор, полученный из v¯ с помощью умножения на действительное число, также будет направляющим для прямой.

Что касается точки P(x 0 ; y 0 ; z 0), то вместо нее в уравнение можно подставить произвольную точку, которая лежит на прямой, и последняя при этом не изменится.

Рисунок выше демонстрирует прямую (синяя линия), которая задана в пространстве через направляющий вектор (красный направленный отрезок).

Не представляет никакого труда получить подобное равенство для двумерного случая. Используя аналогичные рассуждения приходим к выражению:

(x; y) = (x 0 ; y 0) + α × (a; b)

Видим, что оно полностью такое же, как и предыдущее, только используются две координаты вместо трех для задания точек и векторов.

Уравнение параметрическое

Сначала получим в пространстве параметрическое уравнение прямой. Выше, когда записывалось векторное равенство, уже упоминалось о параметре, который в нем присутствует. Чтобы получить параметрическое уравнение, достаточно раскрыть векторное. Получаем:

x = x 0 + α × a;

y = y 0 + α × b;

z = z 0 + α × c

Совокупность этих трех линейных равенств, в каждом из которых имеется одна переменная координата и параметр α, принято называть параметрическим уравнением прямой в пространстве. По сути, мы не сделали ничего нового, а просто явно записали смысл соответствующего векторного выражения. Отметим лишь один момент: число α, хотя и является произвольным, но оно для всех трех равенств одинаковое. Например, если α = -1,5 для 1-го равенства, то такое же его значение следует подставить во второе и в третье равенства при определении координат точки.

Параметрическое уравнение прямой на плоскости подобно таковому для пространственного случая. Оно записывается в виде:

x = x 0 + α × a;

y = y 0 + α × b

Таким образом, чтобы составить параметрическое уравнение прямой, следует записать в явном виде векторное уравнение для нее.

Получение уравнения канонического

Как выше было отмечено, все уравнения, задающие прямую в пространстве и на плоскости, получаются одно из другого. Покажем, как получить из параметрического уравнения прямой каноническое. Для пространственного случая имеем:

x = x 0 + α × a;

y = y 0 + α × b;

z = z 0 + α × c

Выразим параметр в каждом равенстве:

α = (x - x 0) / a;

α = (y - y 0) / b;

α = (z - z 0) / c

Поскольку левые части являются одинаковыми, тогда правые части равенств тоже равны друг другу:

(x - x 0) / a = (y - y 0) / b = (z - z 0) / c

Это и есть каноническое уравнение для прямой в пространстве. Значение знаменателя в каждом выражении является соответствующей координатой Значения в числителе, которые вычитаются из каждой переменной, представляют собой координаты точки, принадлежащей этой прямой.

Соответствующее уравнение для случая на плоскости примет вид:

(x - x 0) / a = (y - y 0) / b

Уравнение прямой через 2 точки

Известно, что две фиксированные точки как на плоскости, так и в пространстве однозначно задают прямую. Предположим, что заданы две следующие точки на плоскости:

Как составить уравнение прямой через них? Для начала следует определить направляющий вектор. Его координаты имеют следующие значения:

PQ¯(x 2 - x 1 ; y 2 - y 1)

Теперь можно записать уравнение в любом из трех видов, которые были рассмотрены в пунктах выше. Например, параметрическое уравнение прямой принимает вид:

x = x 1 + α × (x 2 - x 1);

y = y 1 + α × (y 2 - y 1)

В канонической форме можно переписать его так:

(x - x 1) / (x 2 - x 1) = (y - y 1) / (y 2 - y 1)

Видно, что в каноническое уравнение входят координаты обеих точек, причем в числителе можно менять эти точки. Так, последнее уравнение можно переписать следующим образом:

(x - x 2) / (x 2 - x 1) = (y - y 2) / (y 2 - y 1)

Все записанные выражения называются уравнениями прямой через 2 точки.

Задача с тремя точками

Даны координаты следующих трех точек:

Необходимо определить, лежат эти точки на одной прямой или нет.

Решать эту задачу следует так: сначала составить уравнение прямой для любых двух точек, а затем подставить в него координаты третьей и проверить, удовлетворяют ли они полученному равенству.

Составляем уравнение через M и N в параметрической форме. Для этого применим полученную в пункте выше формулу, которую обобщим на трехмерный случай. Имеем:

x = 5 + α × (-3);

y = 3 + α × (-1);

z = -1 + α × 1

Теперь подставим в эти выражения координаты точки K и найдем значение параметра альфа, который им соответствует. Получаем:

1 = 5 + α × (-3) => α = 4/3;

1 = 3 + α × (-1) => α = 4;

5 = -1 + α × 1 => α = -4

Мы выяснили, что все три равенства будут справедливы, если каждое из них примет отличающееся от других значение параметра α. Последний факт противоречит условию параметрического уравнения прямой, в котором α должны быть равны для всех уравнений. Это означает, что точка K прямой MN не принадлежит, а значит, все три точки на одной прямой не лежат.

Задача на параллельность прямых

Даны два уравнения прямых в параметрическом виде. Они представлены ниже:

x = -1 + 5 × α;

x = 2 - 6 × λ;

y = 4 - 3,6 × λ

Необходимо определить, являются ли прямые параллельными. Проще всего определить параллельность двух прямых с использованием координат направляющих векторов. Обращаясь к общей формуле параметрического уравнения в двумерном пространстве, получаем, что направляющие вектора каждой прямой будут иметь координаты:

Два вектора являются параллельными, если один из них можно получить путем умножения другого на некоторое число. Разделим попарно координаты векторов, получим:

Это означает что:

v 2 ¯ = -1,2 × v 1 ¯

Направляющие вектора v 2 ¯ и v 1 ¯ параллельны, значит, прямые в условии задачи тоже являются параллельными.

Проверим, не являются ли они одной и той же прямой. Для этого нужно подставить координаты любой точки в уравнение для другой. Возьмем точку (-1; 3), подставим ее в уравнение для второй прямой:

1 = 2 - 6 × λ => λ = 1/2;

3 = 4 - 3,6 × λ => λ ≈ 0,28

То есть прямые являются разными.

Задача на перпендикулярность прямых

Даны уравнения двух прямых:

x = 2 + 6 × λ;

y = -2 - 4 × λ

Перпендикулярны ли эти прямые?

Две прямые будут перпендикулярны, если скалярное произведение их направляющих векторов равно нулю. Выпишем эти вектора:

Найдем их скалярное произведение:

(v 1 ¯ × v 2 ¯) = 2 × 6 + 3 × (-4) = 12 - 12 = 0

Таким образом, мы выяснили, что рассмотренные прямые перпендикулярны. Они изображены на рисунке выше.