Реакция воды с активными металлами. Активные металлы

С химической точки зрения металл – это элемент, который во всех соединениях проявляет положительную степень окисления. Из известных в настоящее время 109 элементов 86 являются металлами. Основной отличительной особенностью металлов является наличие в конденсированном состоянии свободных, не связных с определенным атомом электронов. Эти электроны способны перемещаться по всему объему тела. Наличие свободных электронов определяет всю совокупность свойств металлов. В твердом состоянии большинство металлов имеет кристаллическую высокосимметричную структуру одного из типов: кубическую объемноцентрированную, кубическую гранецентрированную или гексагональную плотноупакованную (рис. 1).

Рис. 1. Типичная структура кристалла металлов: а – кубическая объемноцентрированная; б–кубическая гранецентрированная; в – плотная гексагональная

Существует техническая классификация металлов. Обычно выделяют следующие группы: черные металлы (Fe); тяжелые цветные металлы (Cu, Pb, Zn, Ni, Sn, Co, Sb, Bi, Hg, Cd), легкие металлы с плотностью менее 5 г/см 3 (Al, Mg, Ca и т.д.), драгоценные металлы (Au, Ag и платиновые металлы ) и редкие металлы (Be, Sc, In, Ge и некоторые другие).

В химии металлы классифицируются по их месту в периодической системе элементов. Различают металлы главных и побочных подгрупп. Металлы главных подгрупп называют непереходными. Эти металлы характеризуются тем, что в их атомах происходит последовательное заполнение s– и p– электронных оболочек.

Типичными металлами являются s–элементы (щелочные Li, Na, K, Rb, Cs, Fr и щелочноземельные Be, Mg, Ca, Sr, Ba, Ra металлы). Данные металлы расположены в Iа и IIа подгруппах (т. е., в главных подгруппах I и II групп). Этим металлам отвечает конфигурация валентных электронных оболочек ns 1 или ns 2 (n – главное квантовое число). Для данных металлов характерно:

а) металлы имеют на внешнем уровне 1 – 2 электрона, поэтому проявляют постоянные степени окисления +1, +2;

б) оксиды этих элементов носят основной характер (исключение –бериллий, т.к. малый радиус иона придает ему амфотерные свойства);

в) гидриды имеют солеобразный характер и образуют ионные кристаллы;

г) возбуждение электронных подуровней возможно только у металлов IIА группы с последующей sp–гибридизацией орбиталей.

К p–металлам относятся элементы IIIа (Al, Ga, In, Tl), IVа (Ge, Sn, Pb), Vа (Sb, Bi) и VIа (Ро) групп с главными квантовыми числами 3, 4, 5, 6. Данным металлам отвечает конфигурация валентных электронных оболочек ns 2 p z (z может принимать значение от 1 до 4 и равно номеру группы минус 2). Для данных металлов характерно:

а) образование химических связей осуществляется s – и p–электронами в процессе их возбуждения и гибридизации (sp–и spd), однако сверху вниз по группам способность к гибридизации падает;


б) оксиды p– металлов амфотерные или кислотные (основные оксиды только у In и Tl);

в) гидриды p–металлов имеют полимерный характер (AlH 3) n или газообразный (SnH 4 ,PbH 4 и т. д.), что подтверждает сходство с неметаллами, открывающими эти группы.

В атомах металлов побочных подгрупп, называемых переходными металлами, происходит застраивание d– и f– оболочек, в соответствии с чем их делят на d–группу и две f–группы лантаноиды и актиноиды.

К переходным металлам относят 37 элементов d–группы и 28 металлов f–группы. К металлам d–группы относят элементы Ib (Cu, Ag, Au), IIb (Zn, Cd, Hg), IIIb (Sc, Y, La, Ac), IVb (Ti, Zr, Hf, Db), Vb (V, Nb, Ta, Jl), VIb (Cr, Mo, W, Rf), VIIb (Mn, Tc, Re, Bh) и VIII групп (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Rt, Hn, Mt, Db, Jl, Rf, Bh, Hn, Mt). Этим элементам отвечает конфигурация 3d z 4s 2 . Исключения составляют некоторые атомы, в том числе атомы хрома с полузаполненной 3d 5 –оболочкой (3d 5 4s 1) и меди – с полностью заполненной 3d 10 –оболочкой (3d 10 4s 1). Эти элементы обладают некоторыми общими свойствами:

1. все они образуют сплавы между собой и другими металлами;

2. наличие частично заполненных электронных оболочек обусловливает способность d–металлов образовывать парамагнитные соединения;

3. в химических реакциях они проявляют переменную валентность (за немногими исключениями), а их ионы и соединения, как правило, окрашены;

4. в химических соединениях d–элементы электроположительны. "Благородные" металлы, обладая высоким положительным значением стандартного электродного потенциала (Е>0), взаимодействуют с кислотами необычным образом;

5. ионы d–металлов имеют вакантные атомные орбитали валентного уровня (ns, np, (n–1) d), поэтому они проявляют акцепторные свойства, выступая в качестве центрального иона в координационных (комплексных) соединениях.

Химические свойства элементов определяются их положением в Периодической системе элементов Менделеева. Так, металлические свойства сверху вниз в группе возрастают, что обусловлено уменьшением силы взаимодействия между валентными электронами и ядром вследствие увеличения радиуса атома и за счет возрастания экранирования электронами, расположенными на внутренних атомных орбиталях. Это приводит к облегчению ионизации атома. В периоде металлические свойства уменьшаются слева направо, т.к. это связано с увеличением заряда ядра и тем самым с увеличением прочности связи валентных электронов с ядром.

В химическом отношении атомы всех металлов характеризуются сравнительной легкостью отдачи валентных электронов (т.е. малой величиной энергии ионизации) и низким значением сродства к электрону (т.е. малой способностью удерживать избыточные электроны). Как следствие этого низкое значение электроотрицательности, т.е., способность образовывать только положительно заряженные ионы и проявлять в своих соединениях только положительную степень окисления. В связи с этим металлы в свободном состоянии являются восстановителями.

Восстановительная способность разных металлов неодинакова. Для реакций в водных растворах она определяется значением стандартного электродного потенциала металла (т.е. положением металла в ряду напряжений) и концентрацией (активностью) его ионов в растворе.

Взаимодействие металлов с элементарными окислителями (F 2 , Cl 2 , O 2 , N 2 , S и т.д.). Например, реакция с кислородом, как правило, протекает следующим образом

2Me + 0,5nO 2 = Me 2 O n ,

где n – валентность металла.

Взаимодействие металлов с водой. Металлы, обладающие стандартным потенциалом менее –2,71 В, вытесняют водород из воды на холоде с образованием гидроксидов металлов и водорода. Металлы со стандартным потенциалом от –2,7 до –1,23 В вытесняют водород из воды при нагревании

Me + nH 2 О = Me(OH) n + 0,5n H 2 .

Остальные металлы с водой не реагируют.

Взаимодействие с щелочами. С щелочами могут реагировать металлы, дающие амфотерные оксиды, и металлы, обладающие высокими степенями окисления, в присутствии сильного окислителя. В первом случае металлы образуют анионы своих кислот. Так, реакция взаимодействия алюминия с щелочью запишется уравнением

2Al + 6H 2 O + 2NaOH = 2Na + 3H 2

в котором, лигандом является ион гидроксида. Во втором случае образуются соли, например K 2 CrO 4 .

Взаимодействие металлов с кислотами. С кислотами металлы реагируют различно в зависимости от численного значения стандартного электродного потенциала (Е) (т.е. от положения металла в ряду напряжения) и окислительных свойств кислоты:

· в растворах галогеноводородов и разбавленной серной кислоты окислителем является только ион Н + , и поэтому с этими кислотами взаимодействуют металлы, стандартный потенциал которых меньше стандартного потенциала водорода:

Me + 2n H + = Me n+ + n H 2 ;

· концентрированная серная кислота растворяет почти все металлы независимо от положения их в ряду стандартных электродных потенциалов (кроме Au и Pt). Водород при этом не выделяется, т.к. функцию окислителя в кислоте выполняет cульфат–ион (SO 4 2–). В зависимости от концентрации и условий проведения опыта cульфат–ион восстанавливается до различных продуктов. Так, цинк в зависимости от концентрации серной кислоты и температуры реагирует следующим образом:

Zn + H 2 SO 4(разб.) = ZnSO 4 + H 2

Zn + 2H 2 SO 4(конц.) = ZnSO 4 + SO 2 +H 2 O

– при нагревании 3Zn + 4H 2 SO 4(конц.) = 3ZnSO 4 + S + 4H 2 O

– при очень высокой температуре 4Zn + 5H 2 SO 4(конц.) = 4ZnSO 4 + H 2 S +4H 2 O;

· в разбавленной и концентрированной азотной кислоте функцию окислителя выполняет нитрат–ион (NO 3 –), поэтому продукты восстановления зависят от степени разбавления азотной кислоты и активности металлов. В зависимости от концентрации кислоты, металла (величины его стандартного электродного потенциала) и условий проведения опыта нитрат–ион восстанавливается до различных продуктов. Так, кальций в зависимости от концентрации азотной кислоты реагирует следующим образом:

4Ca +10HNO 3(оч. разб) = 4Ca(NO 3) 2 + NH 4 NO 3 + 3H 2 O

4Ca + 10HNO 3(конц) = 4Ca(NO 3) 2 + N 2 O + 5H 2 O.

Концентрированная азотная кислота не реагирует (пассивирует) с железом, алюминием, хромом, платиной и некоторвми другими металлами.

Взаимодействие металлов друг с другом. При высоких температурах металлы способны реагировать друг с другом с образованием сплавов. Сплавы могут быть твердыми растворами и химическими (интерметаллическими) соединениями (Mg 2 Pb, SnSb, Na 3 Sb 8 , Na 2 K и др.).

Свойства металлического хрома (…3d 5 4s 1). Простое вещество хром представляет собой блестящий на изломе серебристый металл, который хорошо проводит электрический ток, имеет высокую температуру плавления (1890°С) и кипения (2430°С), большую твердость (в присутствии примесей, очень чистый хром мягок) и плотность (7,2 г/см 3).

При обычной температуре хром устойчив к действию элементарных окислителей и воде благодаря плотной окисной пленке. При высоких температурах хром взаимодействует с кислородом и другими окислителями.

4Cr + 3O 2 ® 2Cr 2 O 3

2Cr + 3S (пар) ® Cr 2 S 3

Cr + Cl 2(газ) ® CrCl 3 (малиновый цвет)

Cr + HCl (газ) ® CrCl 2

2Cr + N 2 ® 2CrN (или Cr 2 N)

С металлами при сплавлении хром образует интерметаллиды (FeCr 2 , CrMn 3). При 600°С хром взаимодействует с парами воды:

2Cr + 3H 2 O ® Cr 2 O 3 + 3H 2 ­

В электрохимическом отношении металлический хром близок к железу:. Поэтому он может растворяться в неокисляющих (по аниону) минеральных кислотах, таких как галогеноводородные:

Сr + 2HCl ® CrCl 2(голубой цвет) + H 2 ­.

На воздухе идет быстро следующая стадия:

2CrCl 2 + 1/2O 2 + 2HCl ® 2CrCl 3 (зеленый цвет) + H 2 O

Окисляющие (по аниону) минеральные кислоты растворяют хром до трехвалентного состояния:

2Cr + 6H 2 SO 4 ® Cr 2 (SO 4) 3 + 3SO 2 + 6H 2 O

В случае с HNO 3(конц) происходит пассивация хрома – на поверхности образуется прочная пленка оксида – и металл не реагирует с кислотой. (Пассивный хром имеет высокий окислительно-восстановительный потенциал = + 1,3 В.)

Основная область применения хрома – металлургия: создание хромистых сталей. Так, в инструментальную сталь вводят 3 – 4% хрома, шарикоподшипниковая сталь содержит 0,5 – 1,5% хрома, в нержавеющей стали (один из вариантов): 18 – 25% хрома, 6 – 10% никеля, < 0,14% углерода, ~0,8% титана, остальное – железо.

Свойства металлического железа (…3d 6 4s 2). Железо – белый блестящий металл. Образует несколько кристаллических модификаций, устойчивых в определенном температурном интервале.

Химические свойства металлического железа определяются его положением в ряду напряжений металлов: .

При нагревании в атмосфере сухого воздуха железо окисляется:

2Fe + 3/2O 2 ® Fe 2 O 3

В зависимости от условий и от активности неметаллов железо может образовывать металлоподобные (Fe 3 C, Fe 3 Si, Fe 4 N), солеподобные (FeCl 2 , FeS) соединения и твердые растворы (с C, Si, N, B, P, H).

В воде железо интенсивно корродирует:

2Fe + 3/2O 2 +nH 2 O ® Fe 2 O 3 ×nH 2 O.

При недостатке кислорода образуется смешанный оксид Fe 3 O 4:

3Fe + 2O 2 + nH 2 O ® Fe 3 O 4 ×nH 2 O

Разбавленная соляная, серная и азотная кислоты растворяют железо до двухвалентного иона:

Fe + 2HCl ® FeCl 2 + H 2

4Fe + 10HNO 3(оч. разб.) ® 4Fe(NO 3) 2 + NH 4 NO 3 + 3H 2 O

Более концентрированная азотная и горячая концентрированная серная кислоты окисляют железо до трехвалентного состояния (выделяются NO и SO 2 соответственно):

Fe + 4HNO 3 ® Fe(NO 3) 3 + NO + 2H 2 O

Очень концентрированная азотная кислота (плотность 1,4 г/см3) и серная (олеум) пассивируют железо, образуя на поверхности металла оксидные пленки.

Железо используют для получения железоуглеродистых сплавов. Велико биологическое значение железа, т.к. оно – составная часть гемоглобина крови. В организме человека содержится около 3 г железа.

Химические свойства металлического цинка (…3d 10 4s 2). Цинк – синевато-белый, пластичный и тягучий металл, но выше 200°С становится хрупким. Во влажном воздухе он покрывается защитной пленкой основной соли ZnCO 3 ×3Zn(OH) 2 или ZnO и дальнейшего окисления не происходит. При высоких температурах взаимодействует:

2Zn + O 2 ® 2ZnO

Zn + Cl 2 ® ZnCl 2

Zn + H 2 O (пар) ® Zn(OH) 2 + H 2 .

Исходя из величин стандартных электродных потенциалов, цинк вытесняет кадмий, который является его электронным аналогом, из солей: Cd 2+ + Zn ® Cd + Zn 2+ .

Благодаря амфотерности гидроокиси цинка металлический цинк способен растворяться в щелочах:

Zn + 2KOH + H 2 O ® K 2 + H 2

В разбавленных кислотах:

Zn + H 2 SO 4 ® ZnSO 4 + H 2

4Zn + 10HNO 3 ® 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O

В концентрированных кислотах:

4Zn + 5H 2 SO 4 ® 4ZnSO 4 + H 2 S + 4H 2 O

3Zn + 8HNO 3 ® 3Zn(NO 3) 2 + 2NO + 4H 2 O

Значительная часть цинка расходуется для цинкования железных и стальных изделий. Широкое промышленное использование имеют сплавы цинка с медью (нейзильбер, латунь). Цинк широко используется при изготовлении гальванических элементов.

Химические свойства металлической меди (…3d 10 4s 1). Металлическая медь кристаллизуется в кубической гранецентрированной кристаллической решетке. Это ковкий мягкий, вязкий металл розового цвета с температурой плавления 1083°С. Медь находится на втором месте после серебра по электро- и теплопроводности, что обусловливает значение меди для развития науки и техники.

Медь реагирует с поверхности с кислородом воздуха при комнатной температуре, цвет поверхности становится темнее, а в присутствии CO 2 , SO 2 и паров воды покрывается зеленоватой пленкой основных солей (CuOH) 2 CO 3 , (CuOH) 2 SO 4 .

Медь непосредственно соединяется с кислородом, галогенами, серой:

2Cu + O 2 2CuO

4CuO 2Cu 2 O + O 2

Cu + S ® Cu 2 S

В присутствии кислорода металлическая медь взаимодействует с раствором аммиака при обычной температуре:

Находясь в ряду напряжений после водорода , медь не вытесняет его из разбавленных соляной и серной кислот. Однако в присутствии кислорода воздуха медь растворяется в этих кислотах:

2Cu + 4HCl + O 2 ® 2CuCl 2 + 2H 2 O

Окисляющие кислоты растворяют медь с переходом ее в двухвалентное состояние:

Cu + 2H 2 SO 4 ® CuSO 4 + SO 2 + 2H 2 O

3Cu + 8HNO 3(конц.) ® 3Cu(NO 3) 2 + NO 2 + 4H 2 O

Со щелочами медь не взаимодействует.

С солями более активных металлов медь взаимодействует, и эта окислительно-восстановительная реакция лежит в основе некоторых гальванических элементов:

Cu SO 4 + Zn® Zn SO 4 + Cu; E о = 1,1 B

Mg + CuCl 2 ® MgCl 2 + Cu; E о = 1,75 B.

Медь образует с другими металлами большое число интерметаллических соединений. Наибольшую известность и ценность имеют сплавы: латунь Cu–Zn (18 – 40% Zn), бронза Cu–Sn (колокольная – 20% Sn), инструментальная бронза Cu–Zn–Sn (11% Zn, 3 – 8% Sn), мельхиор Cu–Ni–Mn–Fe (68% Cu, 30% Ni, 1% Mn, 1% Fe).

Нахождение металлов в природе и способы получения. Вследствие высокой химической активности, металлы в природе находятся в виде различных соединений, и только малоактивные (благородные) металл – платина, золото и т.п. – встречаются в самородном (свободном) состоянии.

Наиболее распространенными природными соединениями металлов являются оксиды (гематит Fe 2 O 3 , магнетит Fe 3 O 4 , куприт Cu 2 O, корунд Al 2 O 3 , пиролюзит MnO 2 и др.), сульфиды (галенит PbS, сфалерит ZnS, халькопирит CuFeS, киноварь HgS и т.д.), а также соли кислородосодержащих кислот (карбонаты, силикаты, фосфаты и сульфаты). Щелочные и щелочноземельные металлы встречаются преимущественно в виде галогенидов (фторидов или хлоридов).

Основная масса металлов получается путем переработки полезного ископаемого – руды. Поскольку металлы, входящие в состав руд находятся в окисленном состоянии, то их получение осуществляется путем реакции восстановления. Предварительно руду очищают от пустой породы

Образовавшийся концентрат оксида металла очищают от воды, а сульфиды, для удобства последующей переработки, переводят в оксиды путем обжига, например:

2ZnS + 2O 2 = 2ZnO + 2SO 2 .

Для разделения элементов полиметаллических руд пользуются методом хлорирования. При обработке руд хлором в присутствии восстановителя образуются хлориды различных металлов, которые вследствие значительной и различной летучести могут быть легко отделены друг от друга.

Восстановление металлов в промышленности осуществляется посредством различных процессов. Процесс восстановления безводных соединений металлов при высоких температурах называют пирометаллургией. В качестве восстановителей используют металлы, более активные, чем получаемый, либо углерод. В первом случае говорят о металлотермии, во втором – карботермии, например:

Ga 2 O 3 + 3C = 2Ga + 3CO,

Cr 2 O 3 + 2Al = 2Cr + Al 2 O 3 ,

TiCl 4 + 2Mg = Ti + 2MgCl 2 .

Особое значение углерод приобрел как восстановитель железа. Углерод для восстановления металлов применяется обычно в виде кокса.

Процесс восстановления металлов из водных растворов их солей относится к области гидрометаллургии. Получение металлов осуществляется при обычных температурах, причем в качестве восстановителей могут быть использованы сравнительно активные металлы или электроны катода при электролизе. Электролизом водных растворов солей могут быть получены только сравнительно малоактивные металлы, расположенные в ряду напряжений (стандартных электродных потенциалов) непосредственно перед водородом или после него. Активные металлы – щелочные, щелочноземельные, алюминий и некоторые другие, получают электролизом расплава солей.

Атомы металлов сравнительно легко отдают валентные электроны и переходят в положительно заряженные ионы. Поэтому металлы являются восстановителями. Металлы взаимодействуют с простыми веществами: Са + С12 - СаС12, Активные металлы реагируют с водой: 2Na + 2Н20 = 2NaOH + H2f. Металлы, стоящие в ряду стандартных электродных потенциалов до водорода, взаимодействуют с разбавленными растворами кислот (кроме HN03) с выделением водорода: Zn + 2НС1 = ZnCl2 + H2f. Металлы реагируют с водными растворами солей менее активных металлов: Ni + CuS04 = NiS04 + Си J. Металлы реагируют с кислотами-окислителями: С. Способы получения металлов Современная металлургия получает более 75 металлов и многочисленные сплавы на их основе. В зависимости от способов получения металлов различают пирогидро- и электрометаллургию. ГГ) Пирометаллургия охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высоких температурах. В качестве восстановителей применяют уголь, активные металлы, оксид углерода (II), водород, метан. Cu20 + С - 2Си + СО, t° Cu20 + СО - 2Cu + С02, t° Сг203 + 2А1 - 2Сг + А1203, (алюмотермия) t° TiCl2 + 2Mg - Ti + 2MgCl2, (магнийтермия) t° W03 + 3H2 = W + 3H20. (водородотермия) |Ц Гидрометаллургия - это получение металлов из растворов их солей. Например, при обработке разбавленной серной кислотой медной руды, содержащей оксид меди (И), медь переходит в раствор в виде сульфата: CuO + H2S04 = CuS04 + Н20. Затем медь извлекают из раствора либо электролизом, либо вытеснением с помощью порошка железа: CuS04 + Fe = FeS04 + Си. [з] Электрометаллургия - это способы получения металлов из их расплавленных оксидов или солей с помощью электролиза: электролиз 2NaCl - 2Na + Cl2. Вопросы и задачи для самостоятельного решения 1. Укажите положение металлов в периодической системе Д. И. Менделеева. 2. Покажите физические и химические свойства металлов. 3. Объясните причину общности свойств металлов. 4. Покажите изменение химической активности металлов главных подгрупп I и II групп периодической системы. 5. Каким образом изменяются металлические свойства у элементов II и III периодов? Назовите самый тугоплавкий и самый легкоплавкий металлы. 7. Укажите, какие металлы встречаются в природе в самородном состоянии и какие - только в виде соединений. Чем это можно объяснить? 8. Какова природа сплавов? Как состав сплава влияет на его свойства. Покажите на конкретных примерах. Укажите важнейшие способы получения металлов из руд. 10l Назовите разновидности пирометаллургии. Какие восстановители используют в каждом конкретном способе? Почему? 11. Назовите металлы, которые получают с помощью гидрометаллургии. В чем сущность и каковы преимущества данного метода перед другими? 12. Приведите примеры получения металлов с помощью электрометаллургии. В каком случае используют этот способ? 13. Каковы современные способы получения металлов высокой степени чистоты? 14. Что такое «электродный потенциал»? Какой из металлов имеет наибольший и какой - наименьший электродные потенциалы в водном растворе? 15. Охарактеризуйте ряд стандартных электродных потенциалов? 16. Можно ли вытеснить металлическое железо из водного раствора его сульфата с помощью металлического цинка, никеля, натрия? Почему? 17. Каков принцип работы гальванических элементов? Какие металлы могут в них использоваться? 18. Какие процессы относятся к коррозионным? Какие виды коррозии вам известны? 19. Что называется электрохимической коррозией? Какие способы защиты от нее вам известны? 20. Как влияет на коррозию железа его контакт с другими металлами? Какой металл будет разрушаться первым на поврежденной поверхности луженого, оцинкованного и никелированного железа? 21. Какой процесс называют электролизом? Напишите реакции, отражающие процессы, происходящие на катоде и аноде при электролизе расплава хлорида натрия, водных растворов хлорида натрия, сульфата меди, сульфата натрия, серной кислоты. 22. Какую роль играет материал электродов при протекании процессов электролиза? Приведите примеры процессов электролиза, протекающих с растворимыми и нерастворимыми электродами. 23. Сплав, идущий на приготовление медных монет, содержит 95 % меди. Определите второй металл, входящий в сплав, если при обработке однокопеечной монеты избытком соляной кислоты выделилось 62,2 мл водорода (н. у.). алюминий. 24. Навеска карбида металла массой 6 г сожжена в кислороде. При этом образовалось 2,24 л оксида углерода (IV) (н. у.). Определите, какой металл входил в состав карбида. 25. Покажите, какие продукты выделятся при электролизе водного раствора сульфата никеля, если процесс протекает: а) с угольными; б) с никелевыми электродами? 26. При электролизе водного раствора медного купороса на аноде выделилось 2,8 л газа (н. у.). Какой это газ? Что и в каком количестве выделилось на катоде? 27. Составьте схему электролиза водного раствора нитрата калия, протекающего на электродах. Чему равно количество пропущенного электричества, если на аноде выделилось 280 мл газа (н. у.)? Что и в каком количестве выделилось на катоде?

Металлы, это группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность, ковкость и металлический блеск. В данной статье все свойства металлов будут представлены в виде отдельных таблиц.

Содержание

Свойства металлов делятся на физические, химические, механические и технологические.

Физические свойства металлов

К физическим свойствам относятся: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность, теплоемкость, расширяемость при нагревании.

Удельный вес металла — это отношение веса однородного тела из металла к объему металла, т.е. это плотность в кг/м 3 или г/см 3 .

Плавкость металла — это способность металла расплавляться при определенной температуре, называемой температурой плавления.

Электропроводность металлов - это способность металлов проводить электрический ток, это свойство тела или среды, определяющее возникновение в них электрического тока под воздействием электрического поля. Под электропроводностью подразумевается способность проводить прежде всего постоянный ток (под воздействием постоянного поля), в отличие от способности диэлектриков откликаться на переменное электрическое поле колебаниями связанных зарядов (переменной поляризацией), создающими переменный ток.

Магнитные свойства металлов характеризуются: остаточной индукцией, коэрцетивной силой и магнитной проницаемостью.

Теплопроводность металлов — это их способность передавать тепло от более нагретых частиц к менее нагретым. Теплопроводность металла определяется количеством теплоты, которое проходит по металлическому стержню сечением в 1см 2 , длиной 1см в течение 1сек. при разности температур в 1°С.

Теплоемкость металлов — это количество теплоты, поглощаемой телом при нагревании на 1 градус. Отношение количества теплоты, поглощаемой телом при бесконечно малом изменении его температуры, к этому изменению единицы массы вещества (г, кг) называется удельной теплоёмкостью, 1 моля вещества - мольной (молярной).

Расширяемость металлов при нагревании .Все металлы при нагревании расширяются, а при охлаждении сжимаются. Степень увеличения или уменьшения первоначального размера металла при изменении температуры на один градус характеризуется коэффициентом линейного расширения.

Химические свойства металлов

К химическим - окисляемость, растворимость и коррозионная стойкость.

Окисление металлов — это реакция соединения металла с кислородом, сопровождающаяся образованием окислов (оксидов). Если рассмотреть окисляемость шире, то это реакции, в которых атомы теряют электроны и образуются различные соединения, например, хлориды, сульфиды. В природе металлы находятся в основном в окисленном состоянии, в виде руд, поэтому их производство основано на процессах восстановления различных соединений.

Растворимость металлов — это их способность образовывать с другими веществами однородные системы - растворы, в которых металл находится в виде отдельных атомов, ионов, молекул или частиц. Металлы растворяются в растворителях, в качестве которых выступают сильные кислоты и едкие щелочи. В промышленности наиболее часто используются: серная, азотная и соляные кислоты, смесь азотной и соляной кислот (царская водка), а также щелочи — едкий натр и едкий калий.

Коррозионная стойкость металлов - это их способность сопротивляться коррозии.

Механические свойства металлов

К механическим - прочность, твердость, упругость, вязкость, пластичность.

Прочностью металла называется его способность сопротивляться действию внешних сил, не разрушаясь.

Твердостью металлов называется способность тела противостоять проникновению в него другого, более твердого тела.

Упругость металлов - свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызвавших изменение формы (деформацию).

Вязкость металлов — это способность металла оказывать сопротивление быстро возрастающим (ударным) внешним силам. Вязкость - свойство обратное хрупкости.

Пластичность металлов — это свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия сил. Пластичность-свойство обратное упругости.

Технологические свойства металлов

К технологическим - прокаливаемость, жидкотекучесть, ковкость, свариваемость, обрабатываемость резанием.

Прокаливаемость металлов – это их способность получать закаленный слой определенной глубины.

Жидкотекучесть металлов - это свойство металла в жидком состоянии заполнять литейную форму и воспроизводить ее очертания в отливке.

Ковкость металлов -это технологическое свойство, характеризующее их способность к обработке деформированием, например, ковкой, вальцеванием, штамповкой без разрушения.

Свариваемость металлов - это их свойство образовывать в процессе сварки неразъемное соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией производимого изделия.

Обрабатываемость металлов резанием — это их способность изменять геометрическую форму, размеры, качество поверхности за счет механического срезания материала заготовки режущим инструментом. Обрабатываемость металлов зависит от их механических свойств, в первую очередь прочности и твердости.

Современными методами испытания металлов являются механические испытания, химический анализ, спектральный анализ, металлографический и рентгенографический анализы, технологические пробы, дефектоскопия. Эти испытания дают возможность получить представление о природе металлов, их строении, составе и свойствах, а также определить качество готовых изделий.

Таблицы свойств металлов

Таблица «Свойства металлов: Чугун, Литая сталь, Сталь»

  1. Предел прочности на растяжение
  2. Предел текучести (или Rp 0,2);
  3. Относительное удлинение образца при разрыве;
  4. Предел прочности на изгиб;
  5. Предел прочности на изгиб приведен для образца из литой стали;
  6. Предел усталости всех типов чугуна, зависит массы и сечения образца;
  7. Модуль упругости;
  8. Для серого чугуна модуль упругости уменьшается с увеличением напряжения растяжения и остается практически постоянным с увеличением напряжения сжатия.

Таблица «Свойства пружинной стали»

  1. Предел прочности на растяжение,
  2. Относительное уменьшение поперечного сечения образца при разрыве,
  3. Предел прочности на изгиб;
  4. Предел прочности при знакопеременном циклическом нагружении при N ⩾ 10 7 ,
  5. Максимальное напряжение при температуре 30°С и относительном удлинении 1 2% в течение 10 ч; для более высоких температур см. раздел «Способы соединения деталей»,
  6. см. раздел «Способы соединения деталей»;
  7. 480 Н/мм 2 для нагартованных пружин;
  8. Приблизительно на 40% больше для нагартованных пружин

Таблица «Свойства кузовных тонколистовых металлов»

Таблица «Свойства цветных металлов»

  1. Модуль упругости, справочные данные;
  2. Предел прочности на изгиб;
  3. Наибольшая величина;
  4. Для отдельных образцов

Таблица «Свойства легких сплавов»

  1. Предел прочности на растяжение;
  2. Предел текучести, соответствующий пластической деформации 0,2%;
  3. Предел прочности на изгиб;
  4. Наибольшая величина;
  5. Показатели прочности приведены для образцов и для отливок;
  6. Показатели предела прочности на изгиб приведены для случая плоского нагружения

Таблица «Металлокерамические материалы (PM) 1) для подшипников скольжения»

  1. Применительно к подшипнику 10/16 г 10;
  2. Углерод содержится, главным образом, в виде свободного графита;
  3. Углерод содержится только в виде свободного графита

Таблица «Свойства металлокерамических материалов (РМ) 1 для конструкционных деталей»

  1. В соответствии со стандартом DIN 30 910,1990 г. издания;

Магнитные материалы

Таблица «Свойства магнитомягких материалов»

  1. Данные относятся только к магнитным кольцам.

Магнитомягкие металлы

Таблица «Свойства магнитной листовой и полосовой стали»

Материалы для преобразователей и электрических реакторов

Материалы для реле постоянного тока

Таблица «Свойства материалов для реле постоянного тока»

  1. Нормируемые величины

Металлокерамические материалы для магнитомягких компонентов

Таблица «Свойства металлокерамических материалов для магнитомягких компонентов»

1. Металлы реагируют с неметаллами.

2 Me + n Hal 2 → 2 MeHal n

4Li + O2 = 2Li2O

Щелочные металлы, за исключением лития, образуют пероксиды:

2Na + O 2 = Na 2 O 2

2. Металлы, стоящие до водорода, реагируют с кислотами (кроме азотной и серной конц.) с выделением водорода

Me + HCl → соль + H2

2 Al + 6 HCl → 2 AlCl3 + 3 H2

Pb + 2 HCl → PbCl2↓ + H2

3. Активные металлы реагируют с водой с образованием щелочи и выделением водорода.

2Me + 2n H 2 O → 2Me(OH) n + n H 2

Продуктом окисления металла является его гидроксид – Me(OH) n (где n-степень окисления металла).

Например:

Ca + 2H 2 O → Ca(OH) 2 + H 2

4. Металлы средней активности реагируют с водой при нагревании, образуя оксид металла и водород.

2Me + nH 2 O → Me 2 O n + nH 2

Продукт окисления в таких реакциях – оксид металла Me 2 O n (где n-степень окисления металла).

3Fe + 4H 2 O → Fe 2 O 3 ·FeO + 4H 2

5. Металлы, стоящие после водорода, с водой и растворами кислот (кроме азотной и серной конц.) не реагируют

6. Более активные металлы вытесняют менее активные из растворов их солей.

CuSO 4 + Zn = Zn SO 4 + Cu

CuSO 4 + Fe = Fe SO 4 + Cu

Активные металлы ‑ цинк и железо заместили медь в сульфате и образовали соли. Цинк и железо окислились, а медь восстановилась.

7. Галогены реагируют с водой и раствором щелочи.

Фтор в отличие от других галогенов воду окисляет:

2H 2 O + 2F 2 = 4HF + O 2 .

на холоде: Cl2+2KOH=KClO+KCl+H2OCl2+2KOH=KClO+KCl+H2O образуется хлорид и гипохлорит

при нагревании: 3Cl2+6KOH−→KClO3+5KCl+3H2O3Cl2+6KOH→t,∘CKClO3+5KCl+3H2O образуется лорид и хлорат

8 Активные галогены (кроме фтора) вытесняют менее активные галогены из растворов их солей.

9. Галогены не реагируют с кислородом.

10. Амфотерные металлы (Al, Be, Zn) реагируют с растворами щелочей и кислот.

3Zn+4H2SO4=3 ZnSO4+S+4H2O

11. Магний реагирует с углекислым газом и оксидом кремния.

2Мg + CO2 = C + 2MgO

SiO2+2Mg=Si+2MgO

12. Щелочные металлы (кроме лития) с кислородом образуют пероксиды.

2Na + O 2 = Na 2 O 2

3. Классификация неорганических соединений

Простые вещества – вещества, молекулы которых состоят из атомов одного вида (атомов одного элемента). В химических реакциях не могут разлагаться с образованием других веществ.

Сложные вещества (или химические соединения) – вещества, молекулы которых состоят из атомов разного вида (атомов различных химических элементов). В химических реакциях разлагаются с образованием нескольких других веществ.

Простые вещества разбиваются на две большие группы: металлы и неметаллы.

Металлы – группа элементов, обладающая характерными металлическими свойствами: твёрдые вещества (исключение составляет ртуть) имеют металлический блеск, являются хорошими проводниками теплоты и электричества, ковкие (железо (Fe), медь (Cu), алюминий (Al), ртуть (Hg), золото (Au), серебро (Ag) и др.).

Неметаллы – группа элементов: твёрдые, жидкие (бром) и газообразные веществ, которые не обладают металлическим блеском, являются изоляторы, хрупкие.

А сложные вещества в свою очередь подразделятся на четыре группы, или класса: оксиды, основания, кислоты и соли.

Оксиды – это сложные вещества, в состав молекул которых входят атомы кислорода и какого – нибудь другого вещества.

Основания – это сложные вещества, в которых атомы металлов соединены с одной или несколькими гидроксильными группами.

С точки зрения теории электролитической диссоциации, основания – сложные вещества, при диссоциации которых в водном растворе образуются катионы металла (или NH4+) и гидроксид – анионы OH-.

Кислоты – это сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла.

Соли – это сложные вещества, молекулы которых состоят из атомов металлов и кислотных остатков. Соль представляет собой продукт частичного или полного замещения атомов водорода кислоты металлом.

Строение атомов металлов определяет не только характерные физические свойства простых веществ – металлов, но и общие их химические свойства.

При большом многообразии все химические реакции металлов относятся к окислительно-восстановительным и могут быть только двух типов: соединения и замещения. Металлы способны при химических реакциях отдавать электроны, то есть быть восстановителями, проявлять в образовавшихся соединениях только положительную степень окисления.

В общем виде это можно выразить схемой:
Ме 0 – ne → Me +n ,
где Ме – металл – простое вещество, а Ме 0+n – металл химический элемент в соединении.

Металлы способны отдавать свои валентные электроны атомам неметаллов, ионам водорода, ионам других металлов, а поэтому будут реагировать с неметаллами – простыми веществами, водой, кислотами, солями. Однако восстановительная способность металлов различна. Состав продуктов реакции металлов с различными веществами зависит и от окислительной способности веществ и условий, при которых протекает реакция.

При высоких температурах большинство металлов сгорает в кислороде:

2Mg + O 2 = 2MgO

Не окисляются в этих условиях только золото, серебро, платина и некоторые другие металлы.

С галогенами многие металлы реагируют без нагревания. Например, порошок алюминия при смешивании с бромом загорается:

2Al + 3Br 2 = 2AlBr 3

При взаимодействии металлов с водой в некоторых случаях образуются гидроксиды. Очень активно при обычных условиях взаимодействуют с водой щелочные металлы, а также кальций, стронций, барий. Схема этой реакции в общем виде выглядит так:

Ме + HOH → Me(OH) n + H 2

Другие металлы реагируют с водой при нагревании: магний при её кипении, железо в парах воды при красном кипении. В этих случаях получаются оксиды металлов.

Если металл реагирует с кислотой, то он входит в состав образующейся соли. Когда металл взаимодействует с растворами кислоты, он может окисляться ионами водорода, имеющимися в этом растворе. Сокращённое ионное уравнение в общем виде можно записать так:

Me + nH + → Me n + + H 2

Более сильными окислительными свойствами, чем ионы водорода, обладают анионы таких кислородосодержащих кислот, как например, концентрированная серная и азотная. Поэтому с этими кислотами реагируют те металлы, которые не способны окисляться ионами водорода, например, медь и серебро.

При взаимодействии металлов с солями происходит реакция замещения: электроны от атомов замещающего – более активного металла переходят к ионам замещаемого – менее активного металла. То сеть происходит замещение металла металлом в солях. Данные реакции не обратимы: если металл А вытесняет металл В из раствора солей, то металл В не будет вытеснять металл А из раствора солей.

В порядке убывания химической активности, проявляемой в реакциях вытеснения металлов друг друга из водных растворов их солей, металлы располагаются в электрохимическом ряду напряжений (активности) металлов:

Li → Rb → K → Ba → Sr → Ca → Na→ Mg → Al → Mn → Zn → Cr → → Fe → Cd→ Co → Ni → Sn → Pb → H → Sb → Bi → Cu → Hg → Ag → Pd → Pt → Au

Металлы, расположенные в этом ряду левее, более активны и способны вытеснять следующие за ними металлы из растворов солей.

В электрохимический ряд напряжений металлов включён водород, как единственный неметалл, разделяющий с металлами общее свойство - образовывать положительно заряженные ионы. Поэтому водород замещает некоторые металлы в их солях и сам может замещаться многими металлами в кислотах, например:

Zn + 2 HCl = ZnCl 2 + H 2 + Q

Металлы, стоящие в электрохимическом ряду напряжений до водорода, вытесняют его из растворов многих кислот (соляной, серной и др.), а все следующие за ним, например, медь не вытесняют.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.