Перемещение определение. Как найти модуль вектора перемещения Как найти модуль перемещения тела физика

У этого термина существуют и другие значения, см. Перемещение (значения).

Перемеще́ние (в кинематике) - изменение положения физического тела в пространстве с течением времени относительно выбранной системы отсчёта.

Применительно к движению материальной точки перемещением называют вектор, характеризующий это изменение. Обладает свойством аддитивности. Обычно обозначается символом S → {\displaystyle {\vec {S}}} - от итал. s postamento (перемещение).

Модуль вектора S → {\displaystyle {\vec {S}}} - это модуль перемещения, в Международной системе единиц (СИ) измеряется в метрах; в системе СГС - в сантиметрах.

Можно определить перемещение, как изменение радиус-вектора точки: Δ r → {\displaystyle \Delta {\vec {r}}} .

Модуль перемещения совпадает с пройденным путём в том и только в том случае, если при движении направление скорости не изменяется. При этом траекторией будет отрезок прямой. В любом другом случае, например, при криволинейном движении, из неравенства треугольника следует, что путь строго больше.

Мгновенная скорость точки определяется как предел отношения перемещения к малому промежутку времени, за которое оно совершено. Более строго:

V → = lim Δ t → 0 Δ r → Δ t = d r → d t {\displaystyle {\vec {v}}=\lim \limits _{\Delta t\to 0}{\frac {\Delta {\vec {r}}}{\Delta t}}={\frac {d{\vec {r}}}{dt}}} .

III. Траектория, путь и перемещение

Положение материальной точки определяется по отношению к какому-либо другому, произвольно выбранному телу, называемому телом отсчета . С ним связывается система отсчета – совокупность системы координат и часов, связанных с телом отсчета.

В декартовой системе координат положение точки А в данный момент времени по отношению к этой системе характеризуется тремя координатами x, y и z или радиусом-вектором r вектор, проведенный из начала системы координат в данную точку. При движении материальной точки ее координаты с течением времени изменяются.r =r (t) или x=x(t), y=y(t), z=z(t) – кинематические уравнения материальной точки .

Основная задача механики – зная состояние системы в некоторый начальный момент времени t 0 , а также законы, управляющие движением, определить состояния системы во все последующие моменты времени t.

Траектория движения материальной точки – линия, описываемая этой точкой в пространстве. В зависимости от формы траектории различают прямолинейное и криволинейное движение точки. Если траектория точки – плоская кривая, т.е. целиком лежит в одной плоскости, то движение точки называют плоским.

Длина участка траектории АВ, пройденного материальной точкой с момента начала отсчета времени, называется длиной пути Δs и является скалярной функцией времени: Δs=Δs(t). Единица измерения – метр (м)– длина пути, проходимого светом в вакууме за 1/299792458 с.

IV . Векторный способ задания движения

Радиус-вектор r вектор, проведенный из начала системы координат в данную точку. Вектор Δr =r -r 0 , проведенный из начального положения движущейся точки в положение ее в данный момент времени называется перемещением (приращение радиуса-вектора точки за рассматриваемый промежуток времени).

Вектором средней скорости v> называется отношение приращения Δr радиуса-вектора точки к промежутку времени Δt: (1). Направление средней скорости совпадает с направлением Δr.При неограниченном уменьшении Δt средняя скорость стремиться к предельному значению, которое называется мгновенной скоростью v. Мгновенная скорость это скорость тела в данный момент времени и в данной точке траектории: (2). Мгновенная скоростьv есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени.

Для характеристики быстроты изменения скорости v точки в механике вводится векторная физическая величина, называемая ускорением.

Средним ускорением неравномерного движения в интервале от t до t+Δt называется векторная величина, равная отношению изменения скорости Δv к интервалу времени Δt:

Мгновенным ускорением а материальной точки в момент времени t будет предел среднего ускорения: (4). Ускорениеа есть векторная величина, равная первой производной скорости по времени.

V. Координатный способ задания движения

Положение точки М можно характеризовать радиус – вектором r или тремя координатами x, y и z: М(x,y,z). Радиус - вектор можно представить в виде суммы трех векторов, направленных вдоль осей координат: (5).

Из определения скорости (6). Сравнивая (5) и (6) имеем: (7). Учитывая (7) формулу (6) можно записать (8). Модуль скорости можно найти: (9).

Аналогично для вектора ускорения:

(10),

(11),

    Естественный способ задания движения (описание движения с помощью параметров траектории)

Движение описывается формулой s=s(t). Каждая точка траектории характеризуется своим значением s. Радиус – вектор является функцией от s и траектория может быть задана уравнением r =r (s). Тогда r =r (t) можно представить как сложную функцию r . Продифференцируем (14). Величина Δs – расстояние между двумя точками вдоль траектории, |Δr | - расстояние между ними по прямой линии. По мере сближения точек разница уменьшается. , гдеτ – единичный вектор, касательный к траектории. , тогда (13) имеет видv =τ v (15). Следовательно скорость направлена по касательной к траектории.

Ускорение может быть направлено под любым углом к касательной к траектории движения. Из определению ускорения (16). Еслиτ - касательный к траектории, то - вектор перпендикулярный этой касательной, т.е. направлен по нормали. Единичный вектор, в направлении нормали обозначаетсяn . Значение вектора равно 1/R, где R – радиус кривизны траектории.

Точка, отстоящая от траектории на расстоянии и R в направлении нормали n , называется центром кривизны траектории. Тогда (17). Учитывая вышеизложенное формулу (16) можно записать: (18).

Полное ускорение состоит из двух взаимно перпендикулярных векторов: , направленного вдоль траектории движения и называемого тангенциальным, и ускорения , направленного перпендикулярно траектории по нормали, т.е. к центру кривизны траектории и называемого нормальным.

Абсолютное значение полного ускорения найдем: (19).

Лекция 2 Движение материальной точки по окружности. Угловое перемещение, угловая скорость, угловое ускорение. Связь между линейными и угловыми кинематическими величинами. Векторы угловой скорости и ускорения.

План лекции

    Кинематика вращательного движения

При вращательном движении мерой перемещения всего тела за малый промежуток времени dt служит вектор элементарного поворота тела. Элементарные повороты (обозначаются или) можно рассматривать какпсевдовекторы (как бы).

Угловое перемещение - векторная величина, модуль которой равен углу поворота, а направление совпадает с направлением поступа­тельного движения правого винта (направленный вдоль оси вращения так, что если смотреть с его конца, то вращение тела кажется происходящим против часовой стрелки). Единица углового перемещения – рад.

Быстроту изменения углового перемещения с течением времени характеризует угловая скорость ω . Угловая скорость твердого тела – векторная физическая величина, характеризующая быстроту изменения углового перемещения тела с течением времени и равная угловому перемещению, совершаемому телом за единицу времени:

Направлен вектор ω вдоль оси вращения в ту же сторону, что и (по правилу правого винта).Единица угловой скорости- рад/с

Быстроту изменения угловой скорости с течением времени характеризует угловое ускорение ε

(2).

Направлен вектор ε вдоль оси вращения в ту же сторону, что и dω, т.е. при ускоренном вращении , при замедленном .

Единица углового ускорения – рад/с2 .

За время dt произвольная точка твердого тела А переместиться на dr , пройдя путь ds . Из рисунка видно, что dr равно векторному произведению углового перемещения на радиус – вектор точки r : dr =[ · r ] (3).

Линейная скорость точки связана с угловой скоростью и радиусом траектории соотношением:

В векторном виде формулу для линейной скорости можно написать как векторное произведение: (4)

По определению векторного произведения его модуль равен , где - угол между векторами и , а направление совпадает с направлением поступательного движения правого винта при его вращении от к .

Продифференцируем (4) по времени:

Учитывая, что - линейное ускорение, - угловое ускорение, а - линейная скорость, получим:

Первый вектор в правой части направлен по касательной к траектории точки. Он характеризует изменение модуля линейной скорости. Следовательно, этот вектор – касательное ускорение точки: a τ =[ ε · r ] (7). Модуль касательного ускорения равен a τ = ε · r . Второй вектор в (6) направлен к центру окружности и характеризует изменение направления линейной скорости. Этот вектор – нормальное ускорение точки:a n =[ ω · v ] (8). Модуль его равен a n =ω·v или учитывая, что v = ω· r , a n = ω 2 · r = v 2 / r (9).

    Частные случаи вращательного движения

При равномерном вращении: , следовательно .

Равномерное вращение можно характеризовать периодом вращения Т - временем, за которое точка совершает один полный оборот,

Частота вращения - число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени: (11)

Единица частоты вращения - герц (Гц).

При равноускоренном вращательном движении :

(13), (14) (15).

Лекция 3 Первый закон Ньютона. Сила. Принцип независимости действующих сил. Результирующая сила. Масса. Второй закон ньютона. Импульс. Закон сохранения импульса. Третий закон Ньютона. Момент импульса материальной точки, момент силы, момент инерции.

План лекции

    Первый закон Ньютона

    Второй закон Ньютона

    Третий закон Ньютона

    Момент импульса материальной точки, момент силы, момент инерции

    Первый закон Ньютона. Масса. Сила

Первый закон Ньютона: Существуют такие системы отсчета, относительно которых тела движутся прямолинейно и равномерно или покоятся, если на них не действуют силы или действие сил скомпенсировано.

Первый закон Ньютона выполняется только в инерциальной системе отсчёта и утверждает существование инерциальной системе отсчёта.

Инерция – это свойство тел стремиться сохранять скорость неизменной.

Инертностью называют свойство тел препятствовать изменению скорости под действием приложенной силы.

Масса тела – это физическая величина являющаяся количественной мерой инертности, это скалярная аддитивная величина. Аддитивность массы состоит в том, что масса системы тел всегда равна сумме масс каждого тела в отдельности. Масса – основная единица системы «СИ».

Одной из форм взаимодействия является механическое взаимодействие . Механическое взаимодействие вызывает деформацию тел, а также изменение их скорости.

Сила – это векторная величина являющаяся мерой механического воздействия на тело со стороны других тел, или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры (деформируется). Сила характеризуется модулем, направлением действия, точкой приложения к телу.

Общие методы определения перемещений

 1 =Х 1  11 +Х 2  12 +Х 3  13 +…

 2 =Х 1  21 +Х 2  22 +Х 3  23 +…

 3 =Х 1  31 +Х 2  32 +Х 3  33 +…

Абота постоянных сил: А=Р Р, Р – обобщенная сила – любая нагрузка (сосредоточенная сила, сосредоточенный момент, распределенная нагрузка),  Р – обобщенное перемещение (прогиб, угол поворота). Обозначение  mn означает перемещение по направлению обобщенной силы "m" , которое вызвано действием силы обобщенной "n". Полное перемещение, вызванное несколькими силовыми факторами:  Р = Р P + Р Q + Р M . Перемещения вызванные единичной силой или единичным моментом:  – удельное перемещение . Если единичная сила Р=1 вызвала перемещение  Р, то полное перемещение вызванное силой Р, будет:  Р =Р Р. Если силовые факторы, действующие на систему, обозначить Х 1 ,Х 2 ,Х 3 и т.д., то перемещение по направлению каждого из них:

где Х 1  11 =+ 11 ; Х 2  12 =+ 12 ; Х i  m i =+ m i . Размерность удельных перемещений:

, Дж- джоули размерность работы 1Дж = 1Нм.

Работа внешних сил, дейст-щих на упругую систему:

.


–действительная работа при статическом действии обобщенной силы на упругую систему равна половине произведения окончательного значения силы на окончательное значение соответствующего перемещения. Работа внутренних сил (сил упругости) в случае плоского изгиба:

,

k – коэффициент, учитывающий неравномерность распределения касательных напряжений по площади поперечного сечения, зависит от формы сечения.

На основании закона сохранения энергии: потенциальная энергия U=A.

Теорема о взаимности работ (теорема Бетли) . Два состояния упругой ситемы:

 1

1 – перемещение по направл. силы Р 1 от действия силы Р 1 ;

 12 – перемещение по направл. силы Р 1 от действия силы Р 2 ;

 21 – перемещение по направл. силы Р 2 от действия силы Р 1 ;

 22 – перемещение по направл. силы Р 2 от действия силы Р 2 .

А 12 =Р 1  12 – работа силы Р 1 первого состояния на перемещении по ее направлению, вызванном силой Р 2 второго состояния. Аналогично: А 21 =Р 2  21 – работа силы Р 2 второго состояния на перемещении по ее направлению, вызванном силой Р 1 первого состояния. А 12 =А 21 . Такой же результат получается при любом числе сил и моментов. Теорема о взаимности работ : Р 1  12 =Р 2  21 .

Работа сил первого состояния на перемещениях по их направлениям, вызванных силами второго состояния, равна работе сил второго состояния на перемещениях по их направлениям, вызванных силами первого состояния.

Теорема о взаимности перемещений (теорема Максвелла) Если Р 1 =1 и Р 2 =1, то Р 1  12 =Р 2  21 , т.е.  12 = 21 , в общем случае  mn = nm .

Для двух единичных состояний упругой системы перемещение по направлению первой единичной силы, вызванное второй единичной силой, равно перемещению по направлению второй единичной силы, вызванному первой силой.


Ниверсальный метод определения перемещений (линейных и углов поворота) –метод Мора . К системе прикладывают единичную обобщенную силу в точке, для которой ищется обобщенное перемещение. Если определяется прогиб, то единичная сила представляет собой безразмерную сосредоточенную силу, если определяется угол поворота, то – безразмерный единичный момент. В случае пространственной системы действуют шесть компонентов внутренних усилий. Обобщенное перемещение определяется формулой (формула или интеграл Мора):

Черта над М, Q и N указывает на то, что эти внутренние усилия вызваны действием единичной силы. Для вычисления входящих в формулу интегралов надо перемножить эпюры соответствующих усилий. Порядок определения перемещения: 1) для заданной (действительной или грузовой) системы находят выражения M n , N n и Q n ; 2) по направлению искомого перемещения прикладывают соответствующую ему единичную силу (силу или момент); 3) определяют усилия

от действия единичной силы; 4) найденные выражения подставляют в интеграл Мора и интегрируют по заданным участкам. Если полученное mn >0, то перемещение совпадает с выбранным направлением единичной силы, если

Для плоской конструкции:

Обычно при определении перемещений пренебрегают влиянием продольных деформаций и сдвигом, которые вызываются продольной N и поперечной Q силами, учитываются только перемещения, вызываемые изгибом. Для плоской системы будет:

.

В

ычисление интеграла Мора
способом Верещагина . Интеграл

для случая, когда эпюра от заданной нагрузки имеет произвольное очертание, а от единичной – прямолинейное удобно определять графо-аналитическим способом, предложенным Верещагиным.

, где – площадь эпюры М р от внешней нагрузки, y c – ордината эпюры от единичной нагрузки под центром тяжести эпюры М р. Результат перемножения эпюр равен произведению площади одной из эпюр на ординату другой эпюры, взятой под центром тяжести площади первой эпюры. Ордината должна быть обязательно взята из прямолинейной эпюры. Если обе эпюры прямолинейны, то ординату можно взять из любой.

П

еремещение:

. Вычисление по этой формуле производится по участкам, на каждом из которых прямолинейная эпюра должна быть без переломов. Сложную эпюру М р разбивают на простые геометрические фигуры, для которых легче определить координаты центров тяжести. При перемножении двух эпюр, имеющих вид трапеций, удобно использовать формулу:

. Эта же формула годится и для треугольных эпюр, если подставить соответствующую ординату = 0.

П

ри действии равномерно распределенной нагрузки на шарнирно опертую балку эпюра строится в виде выпуклой квадратичной параболы, площадь которой

(для рис.

, т.е.

, х С =L/2).

Д

ля "глухой" заделки при равномерно распределенной нагрузке имеем вогнутую квадратичную параболу, для которой

;

,

, х С =3L/4. Тоже можно получить, если эпюру представить разностью площади треугольника и площади выпуклой квадратичной параболы:

. "Отсутствующая" площадь считается отрицательной.

Теорема Кастильяно .

– перемещение точки приложения обобщенной силы по направлению ее действия равно частной производной от потенциальной энергии по этой силе. Пренебрегая влиянием на перемещение осевых и поперечных сил, имеем потенциальную энергию:

, откуда

.

Что такое перемещение в физике определение?

Грустный роджер

В физике перемещение есть абсолютная величина вектора, проведённого из начальной точки траектории тела в конечную. При этом форма пути, по которому проходило перемещение (то есть собсно траектория), как и величина этого пути, никакого значения не имеет. Скажем, перемещение кораблей Магеллана - ну по крайней мере того, который в итоге вернулся (один из трёх), - равно нулю, хотя пройденный путь ого-го какой.

Трифон ли

Перемещение можно рассматривать в двух ипостасях. 1. Изменение положения тела в пространстве. Причем независимо от с-мы координат. 2. Процесс перемещения, т.е. изменение положения в течение времени. По п.1 можно поспорить, но для этого нужно признать существование абсолютной (первоначальной) с-мы координат.

Перемещение -- изменение местоположения определенного физического тела в пространстве относительно используемой системы отсчета.

Данное определение задается в кинематике -- подразделу механики, изучающему движение тел и математическое описание движения.

Перемещение - это абсолютная величина вектора (то есть прямая), соединяющего две точки пути (из точки А в точку Б). Перемещение отличается от пути тем, что это векторное значение. Это значит, что если объект пришёл в ту же самую точку из которой начал, то перемещение равно нулю. А путь нет. Путь - это расстояние, которое преодолел объект вследствие своего движения. Чтобы лучше понимать посмотрите на картинку:


Что такое путь и перемещение,с точки зрения физика?и в чем между ними разница....

очень нужно)прошу ответить)

Пользователь удален



Александр калапац

Путь - скалярная физическая величина, которая определяет длину участка траектории, пройденого телом в течение заданного времени. Путь - неотрицательная и неубывающая функция времени.
Перемещение - направленный отрезок (вектор) , соединяющий положение тела в начальный момент времени с его положением в конечный момент времени.
Поясняю. Если ты выйдешь из дома, сходишь в гости к другу, и вернешся обратно домой, то твой путь будет равен расстоянию между твоим домом и домом друга, умноженному на два (туда и обратно) , а перемещение твое будет равно нулю, т. к. в конечный момент времени ты окажешься там же, где и в начальный, т. е. у себя дома. Путь - это расстояние, длина, т. е. величина скалярная, не имеющая направления. Перемещение - направленная, векторная величина, причем направление задается знаком, т. е. перемещение может быть отрицательным (Если считать, что дойдя от своего дома до друга ты совершил перемещение s, то когда ты дойдешь от друга до дома, ты совершишь перемещение -s, где минус обозначает, что ты шел в направлении противоположном тому, в котором шел от дома к другу).

Forserr33 v

Путь - скалярная физическая величина, которая определяет длину участка траектории, пройденого телом в течение заданного времени. Путь - неотрицательная и неубывающая функция времени.
Перемещение - направленный отрезок (вектор) , соединяющий положение тела в начальный момент времени с его положением в конечный момент времени.
Поясняю. Если ты выйдешь из дома, сходишь в гости к другу, и вернешся обратно домой, то твой путь будет равен расстоянию между твоим домом и домом друга, умноженному на два (туда и обратно) , а перемещение твое будет равно нулю, т. к. в конечный момент времени ты окажешься там же, где и в начальный, т. е. у себя дома. Путь - это расстояние, длина, т. е. величина скалярная, не имеющая направления. Перемещение - направленная, векторная величина, причем направление задается знаком, т. е. перемещение может быть отрицательным (Если считать, что дойдя от своего дома до друга ты совершил перемещение s, то когда ты дойдешь от друга до дома, ты совершишь перемещение -s, где минус обозначает, что ты шел в направлении противоположном тому, в котором шел от дома к другу).

Масса – это свойство тела, характеризующее его инертность. При одинаковом воздействии со стороны окружающих тел одно тело может быстро изменять свою скорость, а другое в тех же условиях – значительно медленнее. Принято говорить, что второе из этих двух тел обладает большей инертностью, или, другими словами, второе тело обладает большей массой.

Если два тела взаимодействуют друг с другом, то в результате изменяется скорость обоих тел, т. е. в процессе взаимодействия оба тела приобретают ускорения. Отношение ускорений двух данных тел оказывается постоянным при любых воздействиях. В физике принято, что массы взаимодействующих тел обратно пропорциональны ускорениям, приобретаемым телами в результате их взаимодействия.

Сила – это количественная мера взаимодействия тел. Сила является причиной изменения скорости тела. В механике Ньютона силы могут иметь различную физическую природу: сила трения, сила тяжести, упругая сила и т. д. Сила является векторной величиной . Векторная сумма всех сил, действующих на тело, называетсяравнодействующей силой .

Для измерения сил необходимо установить эталон силы и способ сравнения других сил с этим эталоном.

В качестве эталона силы можно взять пружину, растянутую до некоторой заданной длины. Модуль силы F 0 , с которой эта пружина при фиксированном растяжении действует на прикрепленное к ее концу тело, называют эталоном силы . Способ сравнения других сил с эталоном состоит в следующем: если тело под действием измеряемой силы и эталонной силы остается в покое (или движется равномерно и прямолинейно), то силы равны по модулю F = F 0 (рис. 1.7.3).

Если измеряемая сила F больше (по модулю) эталонной силы, то можно соединить две эталонные пружины параллельно (рис. 1.7.4). В этом случае измеряемая сила равна 2F 0 . Аналогично могут быть измерены силы 3F 0 , 4F 0 и т. д.

Измерение сил, меньших 2F 0 , может быть выполнено по схеме, показанной на рис. 1.7.5.

Эталонная сила в Международной системе единиц называется ньютон (Н).

Сила в 1 Н сообщает телу массой 1 кг ускорение 1 м/с 2

На практике нет необходимости все измеряемые силы сравнивать с эталоном. Для измерения сил используют пружины, откалиброванные описанным выше способом. Такие откалиброванные пружины называются динамометрами . Сила измеряется по растяжению динамометра (рис. 1.7.6).

Законы механики Ньютона - три закона, лежащие в основе т. н. классической механики. Сформулированы И. Ньютоном (1687). Первый закон: “Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние”. Второй закон: “Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует”. Третий закон: “Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны”. 1.1. Зако́н ине́рции (Первый закон Нью́тона) : свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае непоступательного движения). Иными словами, телам свойственна ине́рция (от лат. inertia - “бездеятельность”, “косность”), то есть явление сохранения скорости, если внешние воздействия на них скомпенсированы. Системы отсчёта, в которых выполняется закон инерции, называются инерциальными системами отсчёта (ИСО). Впервые закон инерции был сформулирован Галилео Галилеем, который после множества опытов заключил, что для движения свободного тела с постоянной скоростью не нужно какой-либо внешней причины. До этого общепринятой была иная точка зрения (восходящая к Аристотелю): свободное тело находится в состоянии покоя, а для движения с постоянной скоростью необходимо приложение постоянной силы. Впоследствии Ньютон сформулировал закон инерции в качестве первого из трёх своих знаменитых законов. Принцип относительности Галилея: во всех инерциальных системах отсчета все физические процессы протекают одинаково. В системе отсчета, приведенной в состояние покоя или равномерного прямолинейного движения относительно инерциальной системы отсчета (условно - “покоящейся”) все процессы протекают точно так же, как и в покоящейся системе. Следует отметить что понятие инерциальной системы отсчета - абстрактная модель (некий идеальный объект рассматриваемый вместо реального объекта. Примерами абстрактной модели служат абсолютно твердое тело или невесомая нить), реальные системы отсчета всегда связаны с каким-либо объектом и соответствие реально наблюдаемого движения тел в таких системах с результатами расчетов будет неполным. 1.2 Закон движения - математическая формулировка того, как движется тело или как происходит движение более общего вида. В классической механике материальной точки закон движения представляет собой три зависимости трёх пространственных координат от времени, либо зависимость одной векторной величины (радиус-вектора) от времени, вида. Закон движения может быть найден, в зависимости от задачи, либо из дифференциальных законов механики, либо из интегральных. Закон сохранения энергии - основной закон природы, заключающийся в том, что энергия замкнутой системы сохраняется во времени. Другими словами, энергия не может возникнуть из ничего и не может в никуда исчезнуть, она может только переходить из одной формы в другую. Закон сохранения энергии встречается в различных разделах физики и проявляется в сохранении различных видов энергии. Например, в классической механике закон проявляется в сохранении механической энергии (суммы потенциальной и кинетической энергий). В термодинамике закон сохранения энергии называется первым началом термодинамики и говорит о сохранении энергии в сумме с тепловой энергией. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то правильнее называть его не законом, а принципом сохранения энергии. Частный случай - Закон сохранения механической энергии - механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии сил типа трения (диссипативных сил) механическая энергия не возникает из ничего и не может никуда исчезнуть. Ек1+Еп1=Ек2+Еп2 Закон сохранения энергии - это интегральный закон. Это значит, что он складывается из действия дифференциальных законов и является свойством их совокупного действия. Например, иногда говорят, что невозможность создать вечный двигатель обусловлена законом сохранения энергии. Но это не так. На самом деле, в каждом проекте вечного двигателя срабатывает один из дифференциальных законов и именно он делает двигатель неработоспособным. Закон сохранения энергии просто обобщает этот факт. Согласно теореме Нётер, закон сохранения механической энергии является следствием однородности времени. 1.3. Зако́н сохране́ния и́мпульса (Зако́н сохране́ния коли́чества движения 2й закон Ньютона) утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил. В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Однако этот закон сохранения верен и в случаях, когда ньютоновская механика неприменима (релятивистская физика, квантовая механика). Как и любой из законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства Третий закон Ньютона объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой F12, а второе - на первое с силой F21. Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются. Сам закон: Тела действуют друг на друга с силами, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению: . 1.4. Силы инерции Законы Ньютона, строго говоря, справедливы только в инерциальных системах отсчета. Если мы честно запишем уравнение движения тела в неинерциальной системе отсчета, то оно будет по виду отличаться от второго закона Ньютона. Однако часто, для упрощения рассмотрения, вводят некую фиктивную “силу инерции”, и тогда эти уравнения движения переписываются в виде, очень похожем на второй закон Ньютона. Математически здесь всё корректно (правильно), но с точки зрения физики новую фиктивную силу нельзя рассматривать как нечто реальное, как результат некоторого реального взаимодействия. Ещё раз подчеркнём: “сила инерции” - это лишь удобная параметризация того, как отличаются законы движения в инерциальной и неинерциальной системах отсчета. 1.5. Закон вязкости Закон вязкости (внутреннего трения) Ньютона - математическое выражение, связывающее напряжение внутреннего трения τ (вязкость) и изменение скорости среды v в пространстве (скорость деформации) для текучих тел (жидкостей и газов): где величина η называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости (единица СГС - пуаз). Кинематическим коэффициентом вязкости называется величина μ = η / ρ (единица СГС - Стокс, ρ − плотность среды). Закон Ньютона может быть получен аналитически приемами физической кинетики, где вязкость рассматривается обычно одновременно с теплопроводностью и соответсвующим законом Фурье для теплопроводности. В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле где < u > - средняя скорость теплового движения молекул, λ − средняя длина свободного пробега.

Проекции вектора перемещения

При решении задач по физике часто используют проекции вектора перемещения на координатные оси. Проекции вектора перемещения на координатные оси могут быть выражены через разности координат его конца и начала. Например, если материальная точка переместилась из точки А в точку В, то при этом вектор перемещения (рис. 1.3).

Выберем ось ОХ так, чтобы вектор лежал с этой осью в одной плоскости. Опустим перпендикуляры из точек А и В (из начальной и конечной точек вектора перемещения) до пересечения с осью ОХ. Таким образом мы получим проекции точек А и В на ось Х. Обозначим проекции точек А и В соответственно А x и В x . Длина отрезка А x В x на оси ОХ – это и есть проекция вектора перемещения на ось ОХ, то есть

ВАЖНО!
Напоминаю для тех, кто не очень хорошо знает математику: не путайте вектор с проекцией вектора на какую-либо ось (например, S x). Вектор всегда обозначается буквой или несколькими буквами, над которыми находится стрелка. В некоторых электронных документах стрелку не ставят, так как это может вызвать затруднения при создании электронного документа. В таких случаях ориентируйтесь на содержание статьи, где рядом с буквой может быть написано слово «вектор» или каким-либо другим способом вам указывают на то, что это именно вектор, а не просто отрезок.

Рис. 1.3. Проекция вектора перемещения.

Проекция вектора перемещения на ось ОХ равна разности координат конца и начала вектора, то есть

Аналогично определяются и записываются проекции вектора перемещения на оси OY и OZ:

Здесь x 0 , y 0 , z 0 - начальные координаты, или координаты начального положения тела (материальной точки); x, y, z - конечные координаты, или координаты последующего положения тела (материальной точки).

Проекция вектора перемещения считается положительной, если направление вектора и направление координатной оси совпадают (как на рис 1.3). Если направление вектора и направление координатной оси не совпадают (противоположны), то проекция вектора отрицательна (рис. 1.4).

Если вектор перемещения параллелен оси, то модуль его проекции равен модулю самого Вектора. Если вектор перемещения перпендикулярен оси, то модуль его проекции равен нулю (рис. 1.4).

Рис. 1.4. Модули проекции вектора перемещения.

Разность между последующим и начальным значениями какой-нибудь величины называется изменением этой величины. То есть проекция вектора перемещения на координатную ось равна изменению соответствующей координаты. Например, для случая, когда тело перемещается перпендикулярно оси Х (рис. 1.4) получается, что относительно оси Х тело НЕ ПЕРЕМЕЩАЕТСЯ. То есть перемещение тела по оси Х равно нулю.

Рассмотрим пример движения тела на плоскости. Начальное положение тела – точка А с координатами х 0 и у 0 , то есть А(х 0 , у 0). Конечное положение тела – точка В с координатами х и у, то есть В(х, у). Найдём модуль перемещения тела.

Из точек А и В опустим перпендикуляры на оси координат ОХ и OY (рис. 1.5).

Рис. 1.5. Движение тела на плоскости.

Определим проекции вектора перемещения на осях ОХ и OY:

На рис. 1.5 видно, что треугольник АВС – прямоугольный. Из этого следует, что при решении задачи может использоваться теорема Пифагора , с помощью которой можно найти модуль вектора перемещения, так как

По теореме Пифагора

S 2 = S x 2 + S y 2

Откуда можно найти модуль вектора перемещения, то есть длину пути тела из точки А в точку В:

11) Основные кинематические характеристики движения: скорость и ускорение

Основными кинематическими характеристиками движущейся точки являются её скорость и ускорение, значения которых определяются по уравнениям движения через первые и вторые производные по времени от s или от х, у, z, или от r (см. Скорость, Ускорение).

Способы задания движения твёрдого тела зависят от вида, а число уравнений движения - от числа степеней свободы тела (см.Степеней свободы число). Простейшими являются Поступательное движение и Вращательное движение твёрдого тела. При поступательном движении все точки тела движутся одинаково, и его движение задаётся и изучается так же, как движение одной точки. При вращательном движении вокруг неподвижной оси z (рис. 3 ) тело имеет одну степень свободы; его положение определяется углом поворота φ, а закон движения задаётся уравнением φ = f (t ). Основными кинематическими характеристиками являются угловая скорость ω=dφ/dt и угловое ускорение ε = dω/dt тела. Величины ω и ε изображаются в виде векторов, направленных вдоль оси вращения. Зная ω и ε, можно определить скорость и ускорение любой точки тела.

Более сложным является движение тела, имеющего одну неподвижную точку и обладающего 3 степенями свободы (например,Гироскоп, или волчок). Положение тела относительно системы отсчёта определяется в этом случае какими-нибудь 3 углами (например, Эйлера углами: углами прецессии, нутации и собственного вращения), а закон движения - уравнениями, выражающими зависимость этих углов от времени. Основными кинематическими характеристиками являются мгновенная угловая скорость ω и мгновенное угловое ускорение ε тела. Движение тела слагается из серии элементарных поворотов вокруг непрерывно меняющих своё направление мгновенных осей вращения ОР , проходящих через неподвижную точку О (рис. 4 ).

Самым общим случаем является движение свободного твёрдого тела, имеющего 6 степеней свободы. Положение тела определяется 3 координатами одной из его точек, называемых полюсом (в задачах динамики за полюс принимается центр тяжести тела), и 3 углами, выбираемыми так же, как для тела с неподвижной точкой; закон движения тела задаётся 6 уравнениями, выражающими зависимости названных координат и углов от времени. Движение тела слагается из поступательного вместе с полюсом и вращательного вокруг этого полюса, как вокруг неподвижной точки. Таким, например, является движение в воздухе артиллерийского снаряда или самолета, совершающего фигуры высшего пилотажа, движение небесных тел и др. Основными кинематическими характеристиками являются скорость и ускорение поступательной части движения, равные скорости и ускорению полюса, и угловая скорость и угловое ускорение вращения тела вокруг полюса. Все эти характеристики (как и кинематические характеристики для тела с неподвижной точкой) вычисляются по уравнениям движения; зная эти характеристики, можно определить скорость и ускорение любой точки тела. Частным случаем рассмотренного движения является плосконаправленное (или плоское) движение твёрдого тела, при котором все его точки движутся параллельно некоторой плоскости. Подобное движение совершают звенья многих механизмов и машин.

В К. изучают также сложное движение точек или тел, то есть движение, рассматриваемое одновременно по отношению к двум (и более) взаимно перемещающимся системам отсчета. При этом одну из систем отсчета рассматривают как основную (ее еще называют условно неподвижной), а перемещающуюся по отношению к ней систему отсчёта называют подвижной; в общем случае подвижных систем отсчёта может быть несколько.

При изучении сложного движения точки её движение, а также скорость и ускорение по отношению к основной системе отсчёта называют условно абсолютными, а по отношению к подвижной системе - относительными. Движение самой подвижной системы отсчёта и всех неизменно связанных с ней точек пространства по отношению к основной системе называют переносным движением, а скорость и ускорение той точки подвижной системы отсчёта, с которой в данный момент совпадает движущаяся точка, называют переносной скоростью и переносным ускорением. Например, если основную систему отсчета связать с берегом, а подвижную с пароходом, идущим по реке, и рассмотреть качение шарика по палубе парохода (считая шарик точкой), то скорость и ускорение шарика по отношению к палубе будут относительными, а по отношению к берегу - абсолютными; скорость же и ускорение той точки палубы, которой в данный момент касается шарик, будут для него переносными. Аналогичная терминология используется и при изучении сложного движения твёрдого тела.

12) Нормальное и тангенциальное ускорение

При криволинейном движении скорость направлена по касательной к траектории. Поскольку направление скорости постоянно изменяется, то криволинейное движение - всегда движение с ускорением, в том числе, когда модуль скорости остается неизменным В общем случае ускорение направлено под углом к скорости. Составляющая ускорения, направленная вдоль скорости, называется тангенциальным ускорением . Она характеризует изменение скорости по модулю. Составляющая ускорения, направленная к центру кривизны траектории, т.е. перпендикулярно (нормально) скорости, называется нормальным ускорением . Она характеризует изменение скорости по направлению. Здесь R - радиус кривизны траектории в данной точке. Тангенциальное и нормальное ускорение взаимноперпендикулярны, поэтому модуль полного ускорения

13) Кинематика вращательного движения: угловая скорость и угловое ускорение, их связь с линейной скоростью и ускорением

Часто для наглядного представления движения точки пользуются графиками перемещения, скорости и ускорения в функции от времени в прямоугольных координатных осях.

Рассмотрим кинематические графики для равномерного движения. Независимо от того, является оно прямолинейным или криволинейным, мы имеем для него следующие уравнения:

Из этих уравнений следует, что график перемещения равномерного движения является прямой, отсекающей на оси ординат величину s0 , т. е. величину перемещения точки в начале движения от начала отсчета (рис.а).

График скорости изображается прямой линией, параллельной оси абсцисс, так как скорость равномерного движения точки - постоянная величина v = const (рис.б).

Рассмотрим кинематические графики для равнопеременного движения. Каким бы ни было это движение - прямолинейным или криволинейным, - для него справедливы уравнения:

График перемещения равнопеременного движения является криволинейным - параболическим, так как он соответствует уравнению параболы (рис. а, б).

На оси ординат эти графики отсекают при t = О величины, соответствующие расстоянию в начале движения от начала отсчетаs0 .

График скорости изображается прямой, наклоненной к оси абсцисс (рис. в, г), и отсекает на оси ординат (при t = 0) величину начальной скорости v0 .

График ускорения равномерно-переменного движения изображается линией, параллельной оси абсцисс (оси времени) - (рис. д, е.)

При равномерно-ускоренном движении график ускорения располагаем выше оси абсцисс. При равномерно-замедленном движении - ниже (рис. е). При равномерно-замедленном движении значение скорости убывает. Это наглядно видно из (рис. г). Возможен случай, когда скорость, уменьшаясь, достигает нулевого значения (точка М на рис. г). Затем скорость изменяет свой знак и по абсолютному значению начинает увеличиваться. Здесь по существу происходит переход равномерно-замедленного движения в равномерно-ускоренное. Именно такое явление и происходит для случая, изображенного на (рис. б, д) при t = tA , т. е. при изменении алгебраического знака скорости.

Между кинематическими графиками существует определенная взаимосвязь. Так, для равномерного движения график скорости изображается линией, параллельной оси абсцисс, а график расстояния - прямой наклонной линией. Для равнопеременного движения график ускорения является прямой, параллельной оси абсцисс, график скорости - наклонная прямая, а график расстояний - параболическая кривая. Эта взаимосвязь графиков следует непосредственно из дифференциальных зависимостей, связывающих ускорение, скорость и расстояние:

Учитывая аналогию в уравнениях движения точки и уравнениях вращения тела, графическую интерпретацию можно использовать при исследовании вращательного движения, являющегося основным в технике. Здесь вместо расстояния будет фигурировать угол поворота, вместо скорости - угловая скорость, вместо ускорения - угловое ускорение.

14) Масса

физическая величина, одна из основных характеристик материи, определяющая её инерционные и гравитационные свойства. Соответственно различают М. инертную и М. гравитационную (тяжёлую, тяготеющую).

Понятие М. было введено в механику И. Ньютоном. В классической механике Ньютона М. входит в определение импульса (количества движения (См. Количество движения)) тела: импульс p пропорционален скорости движения тела v ,

p = mv . (1)

Коэффициент пропорциональности - постоянная для данного тела величина m - и есть М. тела. Эквивалентное определение М. получается из уравнения движения классической механики

f = ma . (2)

Здесь М. - коэффициент пропорциональности между действующей на тело силой f и вызываемым ею ускорением тела a . Определённая соотношениями (1) и (2) М. называется инерциальной массой, или инертной массой; она характеризует динамические свойства тела, является мерой инерции тела: при постоянной силе чем больше М. тела, тем меньшее ускорение оно приобретает, то есть тем медленнее меняется состояние его движения (тем больше его инерция).

Действуя на различные тела одной и той же силой и измеряя их ускорения, можно определить отношения М. этих тел: m 1 : m 2 : m 3 ... = a 1 : a 2 : a 3 ...; если одну из М. принять за единицу измерения, можно найти М. остальных тел.

В теории гравитации Ньютона М. выступает в другой форме - как источник поля тяготения. Каждое тело создаёт поле тяготения, пропорциональное М. тела (и испытывает воздействие поля тяготения, создаваемого другими телами, сила которого также пропорциональна М. тел). Это поле вызывает притяжение любого другого тела к данному телу с силой, определяемой Ньютона законом тяготения (См.Ньютона закон тяготения):

где r - расстояние между телами, G - универсальная Гравитационная постоянная, a m 1 и m 2 - М. притягивающихся тел. Из формулы (3) легко получить формулу для Веса Р тела массы m в поле тяготения Земли:

Р = m · g . (4)

Здесь g = G · M / r 2 - ускорение свободного падения в гравитационном поле Земли, а r R - радиусу Земли. М., определяемая соотношениями (3) и (4), называется гравитационной массой тела.

Единицей М. в СГС системе единиц служит Грамм, а в Международной системе единиц (См. Международная система единиц) СИ - Килограмм. М. атомов и молекул обычно измеряется в атомных единицах массы (См. Атомные единицы массы). М. элементарных частиц принято выражать либо в единицах М. электрона m e , либо в энергетических единицах, указывая энергию покоя соответствующей частицы. Так, М. электрона составляет 0,511 Мэв , М. протона - 1836,1 m e , или 938,2 Мэв и т. д.

Природа М. - одна из важнейших нерешенных задач современной физики. Принято считать, что М. элементарной частицы определяется полями, которые с ней связаны (электромагнитным, ядерным и другими). Однако количественная теория М. ещё не создана. Не существует также теории, объясняющей, почему М. элементарных частиц образуют дискретный спектр значений, и тем более позволяющей определить этот спектр.

В астрофизике М. тела, создающего гравитационное поле, определяет так называемый Гравитационный радиус тела R гр = 2GM/c 2 . Вследствие гравитационного притяжения никакое излучение, в том числе световое, не может выйти наружу, за поверхность тела с радиусом R R гр. Звёзды таких размеров будут невидимы; поэтому их назвали «чёрными дырами (См. Чёрная дыра)». Такие небесные тела должны играть важную роль во Вселенной.

15) Сила

Силы в механике Сила тяготения Сила упругости Сила трения (сухого и жидкого) Природа взаимодействия Гравитационная Электромагнитная Электромагнитная Формула для расчета силы ; ; Зависимость силы от расстояния или относительной скорости Является функцией расстояния между взаимодействующими телами Является функцией скорости относительного движения Зависимость силы от массы взаимодействующих тел Прямопропорциональна массам взаимодействующих тел Не зависит Не зависит Направление вектора силы Вдоль прямой, соединящей взаимодействующие тела Противоположно направлению перемещения частиц при деформации Противоположно направлению вектора скорости V оm Сохранение значения силы при переходе из одной инерциальной системы отсчета в другую Сохраняет, так как расстояние Rне изменяется Сохраняет, так как деформация х не изменяется Сохраняет, так как модуль относительной скорости V оm не изменяется Условия применимости формулы Материальные точки или сферически симметричные шары Достаточно малая величина деформации Формула выполняется приближенно, так как сила сухого трения зависит от скорости. При жидком трении до определенной скорости выполняется формула , а затем

16) Законы Ньютона

I закон Ньютона

Существуют такие системы отсчета, которые называются инерциальными, относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действие других сил скомпенсированно.

II закон Ньютона

Ускорение тела прямопропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе:

III закон Ньютона

Силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению.

17) Границы применимости законов Ньютона

До конца прошлого столетия никто не сомневался в абсолютной правильности законов Ньютона. Однако в XX в. выяснилось, что эти законы все-таки не абсолютно точны.

Ими нельзя пользоваться, когда тела движутся с очень большими скоростями, которые сравнимы со скоростью света. Альберт Эйнштейн, которого называют Ньютоном XX в., сумел сформулировать законы движения, справедливые и для движения со скоростями, близкими к скорости света.

Эти законы лежат в основе так называемой релятивистской механики или теории относительности. А законы Ньютона представляют собой следствие этих законов, когда скорости тел малы по сравнению со скоростью света.

Законы Ньютона нельзя применять и при рассмотрении движения внутриатомных частиц. Такие движения описываются законами квантовой механики, в которой классическая механика рассматривается как частный случай.

Законы сохранения импульса и энергии, выведенные из законов Ньютона, справедливы и в квантовой механике, и в теории относительности. Механика лежит в основе всего естествознания.

18) Сила трения

Сила, возникающая в месте соприкосновения тел и препятствующая их относительному переме­щению, называется силой трения . Направление силы трения противоположно направлению движения. Различают силу трения покоя и силу трения скольжения.

Если тело скользит по какой-либо поверхности, его движению препятствует сила трения скольжения.

, где N - сила реакции опоры, a μ - коэффициент трения скольжения. Коэф­фициент μ зависит от материала и качества обработки соприкасающихся поверхностей и не зависит от веса тела. Коэффициент трения определяется опытным путем.

Сила трения скольжения всегда направлена противоположно движению тела. При изменении на­правления скорости изменяется и направление си­лы трения.

Сила трения начинает действовать на тело, когда его пытаются сдвинуть с места. Если внешняя сила F меньше произведения μN, то тело не будет сдвигаться - началу движения, как принято гово­рить, мешает сила трения покоя. Тело начнет дви­жение только тогда, когда внешняя сила F превы­сит максимальное значение, которое может иметь сила трения покоя

Трение покоя – сила трения, препятствующая возникновению движению одного тела по поверхности другого.

В некоторых случаях трение полезно (без трения невозможно было бы ходить по земле человеку, жи­вотным, двигаться автомобилям, поездам и т.д.), в таких случаях трение усиливают. Но в других слу­чаях трение вредно. Например, из-за него изнаши­ваются трущиеся детали механизмов, расходуется лишнее горючее на транспорте и т.д. Тогда с трением борются, применяя смазку («жидкостную или воздушную подушку») или заменяя скольжение на качение (поскольку трение качения характеризует­ся значительно меньшими силами, нежели трение скольжения).

Силы трения, в отличие от гравитационных сил и сил упругости, не зависят от координат относительного расположения тел, они могут зависеть от скорости относительного движения соприкасающихся тел. Силы трения являются непотенциальными силами.

Сила трения покоя (υ = 0).

19) Сила упругости

Сила, возникающая в результате деформации тела и направленная в сторону, противоположную перемещению частиц тела при деформации, называется силой упругости.

В элементарном курсе физики рассматриваются деформации растяжения или сжатия. В этих случаях силы упругости направлены вдоль линии действия внешней силы, т.е. вдоль осей продольно деформируемых нитей, пружин, стержней и т. п., или перпендикулярно к поверхностям соприкасающихся тел.

Деформацию растяжения или сжатия характе­ризует абсолютное удлинение: где х 0 - первоначальная длина образца, х - его дли­на в деформированном состоянии. Относительным удлинением тела называют отношение .

Сила упругости, действующая на тело со стороны опоры или подвеса, называется силой реакции опоры (подвеса) или силой натяжения подвеса .

Закон Гука: Сила упругости, возникающая в теле при его деформации растяжения или сжатия , пропорциональна абсолютному удлинению тела и направлена противоположно направлению перемещения частиц тела относительно других частиц при деформации:

Здесь х – удлинение тела (пружины) (м). Удлинение положительно при растяжении тела и отрицательно при сжатии.

Коэффициент пропорциональности k называет­ся жесткостью тела, он зависит от материала, из которого тело изготовлено, а также от его геоме­трических размеров и формы. Жесткость выражается в ньютонах на метр (Н/м).

Сила упругости зависит только от изменения расстояний между взаимодействующими частями данного упругого тела. Работа силы упругости не зависит от формы траек­тории и при перемещении по замкнутой траектории равна нулю. Поэтому силы упругости является потенциальными силами.

20) Гравитационная сила

Гравита́ция (всемирное тяготение, тяготение) -фундаментальное взаимодействие в природе, которому подвержены все тела, имеющие массу. Главным образом, гравитация действует в масштабах космоса. Термингравитация используется также как название раздела в физике, изучающего гравитационное взаимодействие.

Гравитационная постоянная

Из (2.26) при m 1 =m 2 =m имеем

Из этой формулы видно, что гравитационная постоянная численно равна силе взаимного тяготения двух материальных точек, имеющих массы, равные единице массы, и находящихся друг от друга на расстоянии, равном единице длины.
Числовое значение гравитационной постоянной устанавливают экспериментально. Впервые это сделал английский ученый Кэвендиш с помощью крутильного динамометра (крутильных весов).

В СИ гравитационная постоянная имеет значение

G = 6,67·10 -11 Нм 2 /кг 2 .

Следовательно, две материальные точки массой 1 кг каждая, находящиеся друг от друга на расстоянии 1 м, взаимно притягиваются гравитационной силой, равной 6,67·10 -11 Н.

21) Закон всемирного тяготения

В 1687 г. Ньютон установил один из фундаментальных законов механики, получивший название закона всемирного тяготения : любые две материальные частицы притягиваются друг к другу с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.
Эту силу называют силой тяготения (или гравитационной силой).

Траектория (от позднелатинского trajectories – относящийся к перемещению) – это линия, по которой движется тело (материальная точка). Траектория движения может быть прямой (тело перемещается в одном направлении) и криволинейной, то есть механическое движение может быть прямолинейным и криволинейным.

Траектория прямолинейного движения в данной системе координат – это прямая линия. Например, можно считать, что траектория движения автомобиля по ровной дороге без поворотов является прямолинейной.

Криволинейное движение – это движение тел по окружности, эллипсу, параболе или гиперболе. Пример криволинейного движения – движение точки на колесе движущегося автомобиля или движение автомобиля в повороте.

Движение может быть сложным. Например, траектория движения тела в начале пути может быть прямолинейной, затем криволинейной. Например, автомобиль в начале пути движется по прямой дороге, а затем дорога начинает «петлять» и автомобиль начинает криволинейное движение.

Путь

Путь – это длина траектории. Путь является скалярной величиной и в международной системе единиц СИ измеряется в метрах (м). Расчёт пути выполняется во многих задачах по физике. Некоторые примеры будут рассмотрены далее в этом учебнике.

Вектор перемещения

Вектор перемещения (или просто перемещение ) – это направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением (рис. 1.1). Перемещение – величина векторная. Вектор перемещения направлен от начальной точки движения к конечной.

Модуль вектора перемещения (то есть длина отрезка, который соединяет начальную и конечную точки движения) может быть равен пройденному пути или быть меньше пройденного пути. Но никогда модуль вектора перемещения не может быть больше пройденного пути.

Модуль вектора перемещения равен пройденному пути, когда путь совпадает с траекторией (см. разделы и ), например, если из точки А в точку Б автомобиль перемещается по прямой дороге. Модуль вектора перемещения меньше пройденного пути, когда материальная точка движется по криволинейной траектории (рис. 1.1).

Рис. 1.1. Вектор перемещения и пройденный путь.

На рис. 1.1:

Ещё пример. Если автомобиль проедет по кругу один раз, то получится, что точка начала движения совпадёт с точкой конца движения и тогда вектор перемещения будет равен нулю, а пройденный путь будет равен длине окружности. Таким образом, путь и перемещение – это два разных понятия .

Правило сложения векторов

Векторы перемещений складываются геометрически по правилу сложения векторов (правило треугольника или правило параллелограмма, см. рис. 1.2).

Рис. 1.2. Сложение векторов перемещений.

На рис 1.2 показаны правила сложения векторов S1 и S2:

а) Сложение по правилу треугольника
б) Сложение по правилу параллелограмма

Проекции вектора перемещения

При решении задач по физике часто используют проекции вектора перемещения на координатные оси. Проекции вектора перемещения на координатные оси могут быть выражены через разности координат его конца и начала. Например, если материальная точка переместилась из точки А в точку В, то при этом вектор перемещения (см.рис. 1.3).

Выберем ось ОХ так, чтобы вектор лежал с этой осью в одной плоскости. Опустим перпендикуляры из точек А и В (из начальной и конечной точек вектора перемещения) до пересечения с осью ОХ. Таким образом мы получим проекции точек А и В на ось Х. Обозначим проекции точек А и В соответственно А x и В x . Длина отрезка А x В x на оси ОХ – это и есть проекция вектора перемещения на ось ОХ, то есть

S x = A x B x

ВАЖНО!
Напоминаю для тех, кто не очень хорошо знает математику: не путайте вектор с проекцией вектора на какую-либо ось (например, S x). Вектор всегда обозначается буквой или несколькими буквами, над которыми находится стрелка. В некоторых электронных документах стрелку не ставят, так как это может вызвать затруднения при создании электронного документа. В таких случаях ориентируйтесь на содержание статьи, где рядом с буквой может быть написано слово «вектор» или каким-либо другим способом вам указывают на то, что это именно вектор, а не просто отрезок.

Рис. 1.3. Проекция вектора перемещения.

Проекция вектора перемещения на ось ОХ равна разности координат конца и начала вектора, то есть

S x = x – x 0

Аналогично определяются и записываются проекции вектора перемещения на оси OY и OZ:

S y = y – y 0 S z = z – z 0

Здесь x 0 , y 0 , z 0 — начальные координаты, или координаты начального положения тела (материальной точки); x, y, z — конечные координаты, или координаты последующего положения тела (материальной точки).

Проекция вектора перемещения считается положительной, если направление вектора и направление координатной оси совпадают (как на рис 1.3). Если направление вектора и направление координатной оси не совпадают (противоположны), то проекция вектора отрицательна (рис. 1.4).

Если вектор перемещения параллелен оси, то модуль его проекции равен модулю самого Вектора. Если вектор перемещения перпендикулярен оси, то модуль его проекции равен нулю (рис. 1.4).

Рис. 1.4. Модули проекции вектора перемещения.

Разность между последующим и начальным значениями какой-нибудь величины называется изменением этой величины. То есть проекция вектора перемещения на координатную ось равна изменению соответствующей координаты. Например, для случая, когда тело перемещается перпендикулярно оси Х (рис. 1.4) получается, что относительно оси Х тело НЕ ПЕРЕМЕЩАЕТСЯ. То есть перемещение тела по оси Х равно нулю.

Рассмотрим пример движения тела на плоскости. Начальное положение тела – точка А с координатами х 0 и у 0 , то есть А(х 0 , у 0). Конечное положение тела – точка В с координатами х и у, то есть В(х, у). Найдём модуль перемещения тела.

Из точек А и В опустим перпендикуляры на оси координат ОХ и OY (рис. 1.5).

Рис. 1.5. Движение тела на плоскости.

Определим проекции вектора перемещения на осях ОХ и OY:

S x = x – x 0 S y = y – y 0

На рис. 1.5 видно, что треугольник АВС – прямоугольный. Из этого следует, что при решении задачи может использоваться теорема Пифагора , с помощью которой можно найти модуль вектора перемещения, так как

АС = s x CB = s y

По теореме Пифагора

S 2 = S x 2 + S y 2

Откуда можно найти модуль вектора перемещения, то есть длину пути тела из точки А в точку В:

Ну и напоследок предлагаю вам закрепить полученные знания и рассчитать несколько примеров на ваше усмотрение. Для этого введите какие-либо цифры в поля координат и нажмите кнопку РАССЧИТАТЬ. Ваш браузер должен поддерживать выполнение сценариев (скриптов) JavaScript и выполнение сценариев должно быть разрешено в настройках вашего браузера, иначе расчет не будет выполнен. В вещественных числах целая и дробная части должны разделяться точкой, например, 10.5.

При помощи данного видеоурока вы сможете самостоятельно изучить тему «Перемещение», которая входит в школьный курс физики за 9 класс. Из этой лекции учащиеся смогут углубить знания о движении. Учитель напомнит о первой характеристике движения - пройденном пути, а затем перейдет к определению перемещения в физике.

Первой характеристикой движения, введенной нами ранее, был пройденный путь. Напомним, что обозначается он буквой S (иногда встречается обозначение L) и измеряется в СИ в метрах.

Пройденный путь – это скалярная величина, т. е. величина, которая характеризуется только числовым значением. А значит, предсказать, где тело окажется в нужный нам момент времени, мы не сможем. Можно говорить только о пройденном телом общем расстоянии (рис. 1).

Рис. 1. Зная только пройденный путь, нельзя определить положение тела в произвольный момент времени

Чтобы охарактеризовать местоположение тела в произвольный момент, вводится величина, которая называется перемещение. Перемещение – векторная величина, т. е. это величина, которая характеризуется не только числовым значением, но и направлением.

Перемещение обозначается так же, как пройденный путь, буквой S , но, в отличие от пройденного пути, над буквой ставится стрелочка, подчеркивая тем самым, что это величина векторная: .

То, что перемещение и пройденный путь обозначаются одной буквой, вводит в некоторое заблуждение, но мы должны четко понимать разницу между пройденным путем и перемещением. Еще раз отметим, что иногда путь обозначается L. Это позволяет избежать путаницы.

Определение

Перемещение – это вектор (направленный отрезок прямой), который соединяет начальную точку движения тела с его конечной точкой (рис. 2).

Рис. 2. Перемещение – векторная величина

Напомним, что пройденный путь – это длина траектории . А значит, путь и перемещение – это совершенно разные физические величины, хотя иногда случаются ситуации, когда они численно совпадают.

Рис. 3. Путь и модуль перемещения совпадают

На рис. 3 рассмотрен самый простой случай, когда тело движется вдоль прямой (оси Ох ). Тело начинает свое движение из точки 0 и попадает в точку А. В этом случае мы можем говорить о том, что модуль перемещения равен пройденному пути: .

Примером такого движения может служить перелет самолета (например, из Санкт-Петербурга в Москву). Если движение было строго прямолинейным, то тогда модуль перемещения будет равен пройденному пути.

Рис. 4. Величина пути больше модуля перемещения

На рис. 4 тело движется вдоль кривой линии, т. е. движение криволинейное (из точки А в точку В). Из рисунка видно, что модуль перемещения (прямая линия) будет меньше пройденного пути, т. е. длина пройденного пути и длина вектора перемещения не равны.

Рис. 5. Замкнутая траектория

На рис. 5 тело движется по замкнутой кривой. Выходит из точки А и в эту же точку возвращается. Модуль перемещения равен , а пройденный путь - это длина всей кривой, .

Данный случай можно характеризовать следующим примером. Ученик вышел из дома утром, пошел в школу, целый день отзанимался, кроме этого, побывал еще в нескольких местах (магазин, спортзал, библиотека) и вернулся домой. Обратите внимание: в итоге ученик оказался дома, а значит, его перемещение равно 0 (рис. 6).

Рис. 6. Перемещение ученика равно нулю

Когда речь идет о перемещении, важно помнить, что перемещение зависит от системы отсчета, в которой рассматривается движение.


Рис. 7. Определение модуля перемещения тела

Тело движется в плоскости XOY . Точка А - начальное положение тела. Ее координаты . Тело перемещается в точку . Вектор - это перемещение тела: .

Рассчитать модуль перемещения можно как гипотенузу прямоугольного треугольника , используя теорему Пифагора: . Для нахождения же вектора перемещения необходимо найти угол между осью Ох и вектором перемещения.

Мы можем выбрать систему произвольно, то есть направить координатные оси так, как нам удобно, главное - проекции всех векторов в дальнейшем рассматривать в одной и той же выбранной системе координат.

Заключение

В заключение можно отметить, что мы познакомились с важной величиной - перемещением. Еще раз обратите внимание на то, что перемещение и путь могут совпадать только в случае прямолинейного движения, без смены направления такого движения.

Список литературы

  1. Кикоин И.К., Кикоин А.К. Физика: учебник для 9 класса средней школы. - М.: Просвещение.
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений/А. В. Перышкин, Е. М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300.
  3. Соколович Ю.А., Богданова Г.С . Физика: Справочник с примерами решения задач. - 2-е издание передел. - X .: Веста: Издательство «Ранок», 2005. - 464 с.
  1. Интернет-портал «vip8082p.vip8081p.beget.tech» ()
  2. Интернет-портал «foxford.ru» ()

Домашнее задание

  1. Что такое путь и перемещение? Чем они отличаются?
  2. Мотоциклист выехал из гаража и направился на север. Проехал 5 км, затем повернул на запад и проехал также 5 км. На каком расстоянии от гаража он будет находиться?
  3. Минутная стрелка прошла полный круг. Определите перемещение и пройденный путь для точки, которая находится на конце стрелки (радиус часов - 10 см).