Мкт строение вещества. МКТ, термодинамика (изменение физических величин в процессах)

1.1. Термодинамические параметры. @

Мысленно выделенная макроскопическая система, рассматриваемая методами термодинамики, называется термодинамической системой. Все тела, не включенные в состав исследуемой системы, называются внешней средой. Состояние системы задается термодинамическими параметрами (или, по-другому, параметрами состояния) – совокупностью физических величин, характеризующих свойства системы. Обычно в качестве основных параметров выбирают давление р, температуру Т и удельный объем v. Различают два типа термодинамических параметров: экстенсивные и интенсивные. Экстенсивные параметры пропорциональны количеству вещества в системе, а интенсивные не зависят от количества вещества и массы системы. Интенсивными параметрами являются давление, температура, удельный объем и др., а экстенсивными – объем, энергия, энтропия.

Объем пропорционален количеству вещества в системе. При расчетах удобнее оперировать с удельным объемом v – это величина, равная отношению объема к массе системы, то есть объем единицы массы v = V/m = 1/ρ, где ρ – плотность вещества.

Давлением называется физическая величина где dF n - проекция силы на нормаль к поверхности площадью dS.

Температура – это физическая величина, характеризующая энергию макроскопической системы, находящейся в состоянии термодинамического равновесия. Температура системы является мерой интенсивности теплового движения и взаимодействия частиц, образующих систему. В этом состоит молекулярно-кинетический смысл температуры. В настоящее время существует две температурных шкалы – термодинамическая (градуированная в Кельвинах (К)) и Международная практическая (градуированная в градусах Цельсия (˚С)). 1˚С = 1К. Связь между термодинамической температурой Т и температурой по Международной практической шкале имеет вид: Т = t + 273,15˚С.

Всякое изменение состояния термодинамической системы, характеризующееся изменением ее параметров, называется термодинамическим процессом. Термодинамический процесс называется равновесным, если при этом система проходит ряд бесконечно близких равновесных состояний. Равновесное состояние – это такое состояние, в которое система приходит в конце концов при неизменных внешних условиях и дальше остается в этом состоянии сколь угодно долго. Реальный процесс изменения состояния системы будет тем ближе к равновесному, чем медленнее он совершается.

1. 2. Уравнение состояния идеального газа. @

В молекулярно-кинетической теории широко используется физическая модель идеального газа. Это вещество, находящееся в газообразном состоянии, для которого выполняются следующие условия:

1. Собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда.

2. Между молекулами газа отсутствуют взаимодействия, кроме случайных столкновений.

3. Столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Модель идеального газа можно использовать при изучении реальных газов, т.к. они при условиях, близких к нормальным (давление р 0 = 1,013∙10 5 Па, температура Т 0 =273,15К) ведут себя аналогично идеальному газу. Например, воздух при Т=230К и р= р 0 /50 по всем трем критериям подобен модели идеального газа.

Поведение идеальных газов описывается рядом законов.

Закон Авогадро: моли любых газов при одинаковых температуре и давлении занимают одинаковые объемы. При нормальных условиях этот объем равен V M =22,4∙10 -3 м 3 /моль. В одном моле различных веществ содержится одно и то же число молекул, называемое числом Авогадро N A = 6,022∙10 23 моль -1 .

Закон Бойля – Мариотта: для данной массы газа при постоянной температуре произведение давления газа на его объем есть величина постоянная pV = const при Т = const и m = const.

Закон Шарля: давление данной массы газа при постоянном объеме изменяется линейно с температурой р=р 0 (1+αt) при V = const и m = const.

Закон Гей-Люссака: объем данной массы газа при постоянном давлении изменяется линейно с температурой V = V 0 (1+αt) при р = const и m = const. В этих уравнениях t – температура по шкале Цельсия, р 0 и V 0 -давление и объем при 0°С, коэффициент α =1/273,15 К -1 .

Французский физик и инженер Б.Клапейрон и русский ученый Д.И.Менделеев, объединив закон Авогадро и законы идеальных газов Бойля – Мариотта, Шарля и Гей – Люссака, вывели уравнение состояния идеального газа – уравнение, связывающее вместе все три термодинамических параметра системы: для одного моля газа рV М = RT и для произвольной массы газа


Ее можно получить, если учесть, что k =R/N A = 1,38∙10 -23 Дж/К – это постоянная Больцмана, а n =N A /V М – это концентрация молекул газа.

Для расчета давления в смеси разных газов применяется закон Дальтона: давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов: р =р 1 + р 2 + … + p n . Парциальное давление – это такое давление, которое производил бы газ, входящий в состав газовой смеси, если бы он один занимал объем, равный объему смеси при той же температуре. Для расчета парциального давления идеального газа используют уравнение Менделеева– Клапейрона.

1. 3. Основное уравнение молекулярно – кинетической теории идеальных газов и его следствия. @

Рассмотрим одноатомный идеальный газ, занимающий некоторый объем V (рис.1.1.) Пусть число столкновений между молекулами пренебрежимо мало по сравнению с числом столкновений со стенками сосуда. Выделим на стенке сосуда некоторую элементарную площадку ΔS и вычислим давление, оказываемое на эту площадку. При каждом соударении молекула, массой m 0 , движущаяся перпендикулярно площадке со скоростью υ, передает ей импульс, который представляет собой разницу импульсов молекулы до и после соударения:

m 0 υ -(-m 0 υ) = 2m 0 υ.

За время Δt площадки ΔS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием ΔS и длиной υΔt. Это число молекул будет nυΔSΔt, где n – концентрация молекул. Необходимо, однако, учитывать, что реально молекулы движутся к площадке под разными углами и имеют различные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных координатных осей, так что в любой момент времени вдоль каждого из них движется 1/3 молекул, причем половина – 1/6 – движется в одну сторону, половина – в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку ΔS будет nυΔSΔt /6. При столкновении с площадкой эти молекулы передадут ей импульс

В данном случае, когда сила, действующая на единицу площади, постоянна, для давления газа на стенку сосуда мы можем записать р = F/ΔS = ΔP/ΔSΔt = = nm 0 υ 2 /3. Молекулы в сосуде движутся с самыми различными скоростями υ 1, υ 2…. υ n , общее число их – N. Поэтому необходимо рассматривать среднюю квадратичную скорость, которая характеризует всю совокупность молекул:


Приведенное выше уравнение и есть основное уравнение молекулярно-кинетической теории идеальных газов. Поскольку m 0 ‹υ кв › 2 /2 – это средняя энергия поступательного движения молекулы ‹ ε пост ›, уравнение можно переписать в виде:
где E – суммарная кинетическая энергия поступательного движения всех молекул газа. Таким образом, давление равно двум третям энергии поступательного движения молекул, содержащихся в единице объема газа.
Найдем еще кинетическую энергию поступательного движения одной молекулы ‹ ε пост ›, учитывая

k =R/N A получим:


Отсюда следует, что средняя кинетическая энергия хаотического поступательного движения молекул идеального газа пропорциональна его абсолютной температуре и зависит только от нее, т.е. температура есть количественная мера энергии теплового движения молекул. При одинаковой температуре средние кинетические энергии молекул любого газа одинаковы. При Т=0К ‹ε пост › = 0 и поступательное движение молекул газа прекращается, однако анализ различных процессов показывает, что Т = 0К – недостижимая температура.

4. Учитывая, что ‹ε пост › = 3kT/2, р = 2n‹ ε пост ›/3, получим отсюда: р = nkT.

Мы получили уже знакомый нам вариант уравнения Менделеева-Клапейрона, выведенный в данном случае из понятий молекулярно-кинетической теории статистическим методом. Последнее уравнение означает, что при одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул.

1. 4. Барометрическая формула. @

При выводе основного уравнения молекулярно-кинетической теории предполагалось, что если на молекулы газа не действуют внешние силы, то молекулы равномерно распределены по объему. Однако молекулы любого газа находятся в потенциальном поле тяготения Земли. Тяготение, с одной стороны, и тепловое движение молекул, с другой, приводят к некоторому стационарному состоянию газа, при котором концентрация молекул газа и его давление с высотой убывают. Выведем закон изменения давления газа с высотой, предполагая при этом, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте h равно р, то на высоте h+dh оно равно р + dp (рис.1.2). При dh > 0, dр < 0, т.к. давление с высотой убывает. Разность давлений р и (р + dр) равна гидростатическому давлению столба газа авсd, заключенного в объеме цилиндра высотой dh и площадью с основанием равным единице. Это запишется в следующем виде: p- (p+dp) = gρdh, - dp = gρdh или dp = ‑gρdh, где ρ – плотность газа на высоте h. Воспользуемся уравнением состояния идеального газа рV = mRT/M и выразим плотность ρ=m/V=pM/RT. Подставим это выражение в формулу для dр:

dp = - pMgdh/RT или dp/p = - Mgdh/RT

Интегрирование данного уравнения дает следующий результат: Здесь С – константа и в данном случае удобно обозначить постоянную интегрирования через lnC. Потенцируя полученное выражение, находим, что


Данное выражение называется барометрической формулой. Она позволяет найти атмосферное давление в зависимости от высоты, или высоту, если известно давление.

Зависимость давления от высоты демонстрирует рисунок 1.3. Прибор для определения высоты над уровнем моря называется высотомером или альтиметром. Он представляет собой барометр, проградуированный в значениях высоты.

1. 5. Закон Больцмана о распределении частиц во внешнем потенциальном поле. @


здесь n – концентрация молекул на высоте h, n 0 – то же у поверхности Земли. Так как М = m 0 N A , где m 0 – масса одной молекулы, а R = k N A , то мы получим П = m 0 gh – это потенциальная энергия одной молекулы в поле тяготения. Поскольку kT~‹ε пост ›, то концентрация молекул на определенной высоте зависит от соотношения П и ‹ε пост ›

Полученное выражение называется распределением Больцмана для внешнего потенциального поля. Из него следует, что при постоянной температуре плотность газа (с которой связана концентрация) больше там, где меньше потенциальная энергия его молекул.

1. 6. Распределение Максвелла молекул идеального газа по скоростям. @

При выводе основного уравнения молекулярно-кинетической теории отмечалось, что молекулы имеют различные скорости. В результате многократных соударений скорость каждой молекулы меняется со временем по модулю и по направлению. Из-за хаотичности теплового движения молекул все направления являются равновероятными, а средняя квадратичная скорость остается постоянной. Мы можем записать


Постоянство ‹υ кв › объясняется тем, что в газе устанавливается стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется определенному статистическому закону. Этот закон теоретически был выведен Д.К.Максвеллом. Он рассчитал функцию f(u), называемую функцией распределения молекул по скоростям. Если разбить диапазон всех возможных скоростей молекул на малые интервалы, равные du, то на каждый интервал скорости будет приходиться некоторое число молекул dN(u), имеющих скорость, заключенную в этом интервале (Рис.1.4.).

Функция f(v) определяет относительное число молекул, скорости которых лежат в интервале от u до u+ du. Это число - dN(u)/N= f(u)du. Применяя методы теории вероятностей, Максвелл нашел вид для функции f(u)

Данное выражение - это закон о распределении молекул идеального газа по скоростям. Конкретный вид функции зависит от рода газа, массы его молекул и температуры (рис.1.5). Функция f(u)=0 при u=0 и достигает максимума при некотором значении u в, а затем асимптотически стремится к нулю. Кривая несимметрична относительно максимума. Относительное число молекул dN(u)/N, скорости которых лежат в интервале du и равное f(u)du, находится как площадь заштрихованной полоски основанием dv и высотой f(u), показанной на рис.1.4. Вся площадь, ограниченная кривой f(u) и осью абсцисс равна единице, потому что, если просуммировать все доли молекул, имеющих всевозможные значения скорости, то получается единица. Как показано на рис.1.5, с ростом температуры кривая распределения смещается вправо, т.е. растет число быстрых молекул, но площадь под кривой остается постоянной, т.к. N = const.

Скорость u в, при которой функция f(u) достигает максимума, называется наиболее вероятной скоростью. Из условия равенства нулю первой производной функции f(v) ′ = 0 следует, что


Опыт, проведенный немецким физиком О.Штерном, экспериментально подтвердил справедливость распределения Максвелла (рисунок 1.5.). Прибор Штерна состоит из двух коаксиальных цилиндров. Вдоль оси внутреннего цилиндра со щелью проходит платиновая проволока, покрытая слоем серебра. Если пропустить по проволоке ток,она нагревается и серебро испаряется. Атомы серебра, вылетая через щель, попадают на внутреннюю поверхность второго цилиндра. Если прибор будет вращаться, то атомы серебра осядут не против щели, а сместятся от точки О на некоторое расстояние. Исследование количество осадка позволяет оценить распределение молекул по скоростям. Оказалось, что распределение соответствует максвелловскому.

§ 2. Молекулярная физика. Термодинамика

 Основные положения молекулярно-кинетической теории (МКТ) заключаются в следующем.
 1. Вещества состоят из атомов и молекул.
 2. Атомы и молекулы находятся в непрерывном хаотическом движении.
 3. Атомы и молекулы взаимодействуют между собой с силами притяжения и отталкивания
 Характер движения и взаимодействия молекул может быть разным, в связи с этим принято различать 3 агрегатных состояния вещества: твёрдое, жидкое и газообразное . Наиболее сильно взаимодействие между молекулами в твёрдых телах. В них молекулы расположены в так называемых узлах кристаллической решётки, т.е. в положениях, при которых равны силы притяжения и отталкивания между молекулами. Движение молекул в твёрдых телах сводится к колебательному около этих положений равновесия. В жидкостях ситуация отличается тем, что, поколебавшись около каких-то положений равновесия, молекулы часто их меняют. В газах молекулы далеки друг от друга, поэтому силы взаимодействия между ними очень малы и молекулы движутся поступательно, изредка сталкиваясь между собой и со стенками сосуда, в котором они находятся.
Относительной молекулярной массой M r называют отношение массы m o молекулы к 1/12 массы атома углерода m oc:

Количество вещества в молекулярной физике принято измерять в молях.
Молем ν называется количество вещества, в котором содержится столько же атомов или молекул (структурных единиц), сколько их содержится в 12 г углерода. Это число атомов в 12 г углерода называется числом Авогадро :

Молярная масса M = M r · 10 −3 кг/моль - это масса одного моля вещества. Количество молей в веществе можно рассчитать по формуле

Основное уравнение молекулярно-кинетической теории идеального газа:

где m 0 - масса молекулы; n - концентрация молекул; - средняя квадратичная скорость движения молекул.

2.1. Газовые законы

Уравнение состояния идеального газа - уравнение Менделеева-Клапейрона:

Изотермический процесс (закон Бойля-Мариотта):
Для данной массы газа при неизменной температуре произведение давления на его объём есть величина постоянная:

В координатах p − V изотерма - гипербола, а в координатах V − T и p − T - прямые (см. рис. 4)

Изохорный процесс (закон Шарля):
Для данной массы газа при неизменном объёме отношение давления к температуре в градусах Кельвина есть величина постоянная (см. рис. 5).

Изобарный процесс (закон Гей-Люссака):
Для данной массы газа при неизменном давлении отношение объёма газа к температуре в градусах Кельвина есть величина постоянная (см. рис. 6).

Закон Дальтона :
Если в сосуде находится смесь нескольких газов, то давление смеси равно сумме парциальных давлений, т.е. тех давлений, которые каждый газ создавал бы в отсутствии остальных.

2.2. Элементы термодинамики

Внутренняя энергия тела равна сумме кинетических энергий беспорядочного движения всех молекул относительно центра масс тела и потенциальных энергий взаимодействия всех молекул друг с другом.
Внутренняя энергия идеального газа представляет собой сумму кинетических энергий беспорядочного движения его молекул; так как молекулы идеального газа не взаимодействуют друг с другом, то их потенциальная энергия обращается в нуль.
 Для идеального одноатомного газа внутренняя энергия

Количеством теплоты Q называют количественную меру изменения внутренней энергии при теплообмене без совершения работы.
Удельная теплоёмкость - это количество теплоты, которое получает или отдаёт 1 кг вещества при изменении его температуры на 1 К

Работа в термодинамике:
работа при изобарном расширении газа равна произведению давления газа на изменение его объёма:

Закон сохранения энергии в тепловых процессах (первый закон термодинамики):
изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

Применение первого закона термодинамики к изопроцессам:
а) изотермический процесс T = const ⇒ ∆T = 0.
В этом случае изменение внутренней энергии идеального газа

Следовательно: Q = A.
Всё переданное газу тепло расходуется на совершение им работы против внешних сил;

б) изохорный процесс V = const ⇒ ∆V = 0.
В этом случае работа газа

Следовательно, ∆U = Q.
Всё переданное газу тепло расходуется на увеличение его внутренней энергии;

в) изобарный процесс p = const ⇒ ∆p = 0.
В этом случае:

Адиабатным называется процесс, происходящий без теплообмена с окружающей средой:

В этом случае A = −∆U , т.е. изменение внутренней энергии газа происходит за счёт совершения работы газа над внешними телами.
 При расширении газ совершает положительную работу. Работа A, совершаемая внешними телами над газом, отличается от работы газа только знаком:

Количество теплоты, необходимое для нагревания тела в твёрдом или жидком состоянии в пределах одного агрегатного состояния, рассчитывается по формуле

где c - удельная теплоёмкость тела, m - масса тела, t 1 - начальная температура, t 2 - конечная температура.
Количество теплоты, необходимое для плавления тела при температуре плавления, рассчитывается по формуле

где λ - удельная теплота плавления, m - масса тела.
Количество теплоты, необходимое для испарения , рассчитывается по формуле

где r - удельная теплота парообразования, m - масса тела.

Для того чтобы превратить часть этой энергии в механическую, чаще всего пользуются тепловыми двигателями. Коэффициентом полезного действия теплового двигателя называют отношение работы A, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Французский инженер С. Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. КПД такой машины

 В воздухе, представляющем из себя смесь газов, наряду с другими газами находятся водяные пары. Их содержание принято характеризовать термином «влажность». Различают абсолютную и относительную влажность.
Абсолютной влажностью называют плотность водяных паров в воздухе - ρ ([ρ] = г/м 3). Можно характеризовать абсолютную влажность парциальным давлением водяных паров - p ([p] = мм. рт. столба; Па).
Относительная влажность (ϕ) - отношение плотности водяного пара, имеющегося в воздухе, к плотности того водяного пара, который должен был бы содержаться в воздухе при этой температуре, чтобы пар был насыщенным. Можно измерять относительную влажность как отношение парциального давления водяного пара (p) к тому парциальному давлению (p 0), которое имеет насыщенный пар при этой температуре:

Молекулярная физика раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе рассмотрения их молекулярного строения, силы взаимодействия между частицами, образующими тела и характеры теплового движения этих частиц.

Многочисленные исследования, проведенные этими учеными позволили сформулироватьосновные положения молекулярно-кинетической теории – МКТ.

МКТ объясняет строение и свойства тел на основе закономерностей движения и взаимодействия молекул, из которых состоят тела.

В основе МКТ лежат три важных положения, подтвержденные экспериментально и теоретически.

  1. Все тела состоят из мельчайших частиц – атомов, молекул, в состав которых входят еще более мелкие элементарные частицы (электроны, протоны, нейтроны). Строение любого вещества дискретно (прерывисто).
  2. Атомы и молекулы вещества всегда находятся в непрерывном хаотическом движении.
  3. Между частицами любого вещества существуют силы взаимодействия – притяжения и отталкивания. Природа этих сил электромагнитная.

Эти положения подтверждаются опытным путем.

Опытное обоснование 1 положения.

Все тела состоят из мельчайших частиц. Во-первых, об этом говорит возможность деления вещества (все тела можно разделить на части).

Наиболее ярким экспериментальным подтверждением представлений молекулярно-кинетической теории о беспорядочном движении атомов и молекул является броуновское движение .

Оно было открыто английским ботаником Р. Броуном (1827 г.). В 1827 году англ. ботаник Броун, изучая внутреннее строение растений с помощью микроскопа обнаружил, что частички твердого вещества в жидкой среде совершают непрерывное хаотическое движение.

Тепловое движение взвешенных в жидкости (или газе) частиц получило название броуновского движения.

Броуновские частицы движутся под влиянием беспорядочных ударов молекул. Из-за хаотического теплового движения молекул эти удары никогда не уравновешивают друг друга. В результате скорость броуновской частицы беспорядочно меняется по модулю и направлению, а ее траектория представляет собой сложную зигзагообразную кривую. Теория броуновского движения была создана А. Эйнштейном (1905 г.). Экспериментально теория Эйнштейна была подтверждена в опытах французского физика Ж. Перрена (1908–1911 гг.).

Причиной броуновского движения является непрерывное хаотическое движение молекул жидкости или газа, которые, беспорядочно ударяясь со всех сторон о частичку, приводят её в движение. Причина броуновского движения частицы в том, что удары молекул о неё не компенсируются. Значит броуновское движение является еще и опытным обоснованием 2 положения МКТ.

Непрерывное движение молекул любого вещества (твердого, жидкого, газообразного) подтверждается многочисленными опытами по диффузии.

Диффузией называют явление самопроизвольного проникновения молекул одного вещества в промежутки между молекулами другого. Т.е. это самопроизвольное перемешивание веществ.

Если пахучее вещество (духи) внести в помещение, то через некоторое время запах этого вещества распространится по всему помещению. Это свидетельствует о том, что молекулы одного вещества без воздействия внешних сил проникают в другое. Диффузия наблюдается и в жидкостях, и в твердых телах.

При изучении строения вещества было установлено, что между молекулами одновременно действуют силы притяжения и отталкивания, называемые молекулярными силами. Это силы электромагнитной природы.

Способность твердых тел сопротивляться растяжению, особые свойства поверхности жидкости приводят к выводу, что между молекулами действуют силы притяжения .

Малая сжимаемость весьма плотных газов и особенно жидкостей и твердых тел означает, что между молекулами существуют силы отталкивания .

Эти силы действуют одновременно. Если бы этого не было, то тела не были бы устойчивыми: либо разлетелись бы на частицы, либо слипались.

Межмолекулярное взаимодействие – это взаимодействие электрически нейтральных молекул и атомов.

Силы, действующие между двумя молекулами, зависят от расстояния между ними. Молекулы представляют собой сложные пространственные структуры, содержащие как положительные, так и отрицательные заряды. Если расстояние между молекулами достаточно велико, то преобладают силы межмолекулярного притяжения. На малых расстояниях преобладают силы отталкивания. Зависимости результирующей силы F и потенциальной энергии E p взаимодействия между молекулами от расстояния между их центрами качественно изображены на рисунке. При некотором расстоянии r = r 0 сила взаимодействия обращается в нуль. Это расстояние условно можно принять за диаметр молекулы. Потенциальная энергия взаимодействия при r = r 0 минимальна. Чтобы удалить друг от друга две молекулы, находящиеся на расстоянии r 0 , нужно сообщить им дополнительную энергию E 0 . Величина E 0 называется глубиной потенциальной ямы или энергией связи .

Между электронами одной молекулы и ядрами другой действуют силы притяжения, которые условно принято считать отрицательными (нижняя часть графика). Одновременно между электронами молекул и их ядрами действуют силы отталкивания, которые условно считают положительными (верхняя часть графика). На расстоянии равном размеру молекул результирующая сила равна нулю, т.е. силы притяжения уравновешивают силы отталкивания. Это наиболее устойчивое расположение молекул. При увеличении расстояния притяжение превосходит силу отталкивания, при уменьшении расстояния между молекулами – наоборот.

Атомы и молекулы взаимодействуют и значит обладают потенциальной энергией .

Атомы и молекулы находятся в постоянном движении, и значит, обладают кинетической энергией.

Масса и размеры молекул

Большинство веществ состоит из молекул, поэтому для объяснения свойств макроскопических объектов, объяснения и предсказания явлений важно знать основные характеристики молекул.

Молекулой называют наименьшую устойчивую частицу данного вещества, обладающую его основными химическими свойствами.

Молекула состоит из ещё более мелких частиц – атомов, которые в свою очередь, состоят из электронов и ядер.

Атомом называют наименьшую частицу данного химического элемента.

Размеры молекул очень малы.

Порядок величины диаметра молекулы 1*10 - 8 см = 1*10 - 10 м

Порядок величины объёма молекулы 1*10 - 20 м 3

О том что размеры молекул малы можно судить и из опыта. В 1 л (м 3) чистой воды разведем 1 м 3 зеленых чернил, тете разбавим чернила в 1 000 000 раз. Увидим, что раствор имеет зеленую окраску и вместе с тем однороден. Это говорит о том, что даже при разбавлении в 1 000 000 раз в воде находится большое количество молекул красящего вещества. Этот опыт показывает, как малы размеры молекул.

В 1 см 3 воды содержится 3,7*10 -8 молекул.

Порядок величины массы молекул 1*10 -23 г = 1*10 -26 кг

В молекулярной физике принято характеризовать массы атомов и молекул не их абсолютными значениями (в кг), а относительными безразмерными величинами относительной атомной массой и относительной молекулярной массой.

По международному соглашению в качестве единичной атомной массы m 0 принимается 1/12 массы изотопа углерода 12 С (m 0С):

m 0 =1/12 m 0С =1,66 *10 -27

Относительную молекулярную массу можно определить, если абсолютное значение массы молекулы (m мол в кг) разделить на единичную атомную массу.

M 0 = m мол / 1/12 m 0С

Относительная молекулярная (атомарная) масса вещества (из таблицы Менделеева)

7 14 N Азот M 0 N = 14 M 0 N 2 = 28

Относительное число атомов или молекул, содержащихся в веществе характеризуется физической величиной, называемой количеством вещества.

Количество вещества ע – это отношение числа молекул (атомов) N в донном макроскопическом теле к числу молекул в 0,012 кг углерода N A

Количество вещества выражают в молях

Один моль – это количество вещества, в котором столько же молекул (атомов), сколько атомов содержится в 0,012 кг углерода.

Моль любого вещества содержит одинаковое число молекул. Это число называют постоянной Авогадро N A =6, 02 * 10 23 моль -1

Масса одного моля вещества называется молярной массой.

Число молекул в данной массе вещества:

Масса вещества (любого количества вещества):

Определение молярной массы:

Видеоресурс: Масса молекул. Количество вещества.

{youtube}bfPw9aZJVqk&list=PLhOzgnnk_5jyM6NXfLniX5sX3rZTrpoea&index=18{/youtube}

Понятие температуры – одно из важнейших в молекулярной физике.

Температура - это физическая величина, которая характеризует степень нагретости тел.

Беспорядочное хаотическое движение молекул называется тепловым движением .

Кинетическая энергия теплового движения растет с возрастанием температуры. При низких температурах средняя кинетическая энергия молекулы может оказаться небольшой. В этом случае молекулы конденсируются в жидкое или твердое вещество; при этом среднее расстояние между молекулами будет приблизительно равно диаметру молекулы. При повышении температуры средняя кинетическая энергия молекулы становится больше, молекулы разлетаются, и образуется газообразное вещество.

Понятие температуры тесно связано с понятием теплового равновесия. Тела, находящиеся в контакте друг с другом, могут обмениваться энергией. Энергия, передаваемая одним телом другому при тепловом контакте, называется количеством теплоты .

Рассмотрим пример. Если положить нагретый металл на лед, то лед начнет плавится, а металл – охлаждаться до тех пор, пока температуры тел не станут одинаковыми. При контакте между двумя телами разной температуры происходит теплообмен, в результате которого энергия металла уменьшается, а энергия льда увеличивается.

Энергия при теплообмене всегда передается от тела с более высокой температурой к телу с более низкой температурой. В конце концов, наступает состояние системы тел, при котором теплообмен между телами системы будет отсутствовать. Такое состояние называют тепловым равновесием .

Тепловое равновесие это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными.

Температура это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии. Возможность введения понятия температуры следует из опыта и носит название нулевого закона термодинамики.

Тела, находящиеся в тепловом равновесии, имеют одинаковые температуры.

Для измерения температур чаще всего используют свойство жидкости изменять объем при нагревании (и охлаждении).

Прибор, с помощью которого измеряется температура, называется термометр.

Для создания термометра необходимо выбрать термометрическое вещество (например, ртуть, спирт) и термометрическую величину, характеризующую свойство вещества (например, длина ртутного или спиртового столбика). В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании). Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются заданными. Чаще всего используют простые природные системы, в которых температура остается неизменной, несмотря на теплообмен с окружающей средой – это смесь льда и воды и смесь воды и пара при кипении при нормальном атмосферном давлении.

Обыкновенный жидкостный термометр состоит из небольшого стеклянного резервуара, к которому присоединена стеклянная трубка с узким внутренним каналом. Резервуар и часть трубки наполнены ртутью. Температуру среды, в которую погружен термометр определяют по положению верхнего уровня ртути в трубке. Деления на шкале условились наносить следующим образом. Цифру 0 ставят в том месте шкалы, где устанавливается уровень столбика жидкости, когда термометр опущен в тающий снег (лед), цифру 100 – в том месте, где устанавливается уровень столбика жидкости, когда термометр погружен в пары воды, кипящей при нормальном давлении (10 5 Па). Расстояние между этими отметками делят на 100 равных частей, называемых градусами. Такой способ деления шкалы введен Цельсием. Градус по шкале Цельсия обозначают ºС.

По температурной шкале Цельсия точке плавления льда приписывается температура 0 °С, а точке кипения воды – 100 °С. Изменение длины столба жидкости в капиллярах термометра на одну сотую длины между отметками 0 °С и 100 °С принимается равным 1 °С.

В ряде стран (США) широко используется шкала Фаренгейта (T F), в которой температура замерзающей воды принимается равной 32 °F, а температура кипения воды равной 212 °F. Следовательно,

Ртутные термометры применяют для измерения температуры в области от -30 ºС до +800 ºС. Наряду с жидкостными ртутными и спиртовыми термометрами применяются электрические и газовые термометры.

Электрический термометр – термосопротивление – в нем используется зависимость сопротивления металла от температуры.

Особое место в физике занимают газовые термометр , в которых термометрическим веществом является разреженный газ (гелий, воздух) в сосуде неизменного объема (V = const), а термометрической величиной – давление газа p . Опыт показывает, что давление газа (при V = const) растет с ростом температуры, измеренной по шкале Цельсия.

Чтобы проградуировать газовый термометр постоянного объема, можно измерить давление при двух значениях температуры (например, 0 °C и 100 °C), нанести точки p 0 и p 100 на график, а затем провести между ними прямую линию. Используя полученный таким образом калибровочный график, можно определять температуры, соответствующие другим значениям давления.

Газовые термометры громоздки и неудобны для практического применения: они используются в качестве прецизионного стандарта для калибровки других термометров.

Показания термометров, заполненных различными термометрическими телами, обычно несколько различаются. Чтобы точное определение температуры не зависело от вещества, заполняющего термометр, вводится термодинамическая шкала температур.

Чтобы её ввести, рассмотрим, как зависит давление газа от температуры, когда его масса и объём остаются постоянными.

Термодинамическая шкала температур. Абсолютный нуль.

Возьмем закрытый сосуд с газом, и будем нагревать его, первоначально поместив в тающий лед. Температуру газа t определим с помощью термометра, а давление p манометром. С увеличением температуры газа его давление будет возрастать. Такую зависимость нашел французский физик Шарль. График зависимости p от t, построенный на основании такого опыта, имеет вид прямой линии.

Если продолжить график в область низких давлений, можно определить некоторую «гипотетическую» температуру, при которой давление газа стало бы равным нулю. Опыт показывает, что эта температура равна –273,15 °С и не зависит от свойств газа. Невозможно на опыте получить путем охлаждения газ в состоянии с нулевым давлением, так как при очень низких температурах все газы переходят в жидкие или твердые состояния. Давление идеального газа определяется ударами хаотически движущихся молекул о стенки сосуда. Значит, уменьшение давления при охлаждении газа объясняется уменьшением средней энергии поступательного движения молекул газа Е; давление газа будет равно нулю, когда станет равна нулю энергия поступательного движения молекул.

Английский физик У. Кельвин (Томсон) выдвинул идею о том, что полученное значение абсолютного нуля соответствует прекращению поступательного движения молекул всех веществ. Температуры ниже абсолютного нуля в природе быть не может. Это предельная температура при которой давление идеального газа равно нулю.

Температуру, при которой должно прекратиться поступательное движение молекул, называют абсолютным нулем (или нулем Кельвина).

Кельвин в 1848 г. предложил использовать точку нулевого давления газа для построения новой температурной шкалы – термодинамической шкалы температур (шкала Кельвина ). За начало отсчета по этой шкале принята температура абсолютного нуля.

В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой К.

Размер градуса кельвина определяют так, чтобы он совпадал с градусом Цельсия, т.е 1К соответствует 1ºС.

Температура, отсчитанная по термодинамической шкале температур, обозначается Т. Её называют абсолютной температурой или термодинамической температурой .

Температурная шкала Кельвина называется абсолютной шкалой температур . Она оказывается наиболее удобной при построении физических теорий.

Кроме точки нулевого давления газа, которая называется абсолютным нулем температуры , достаточно принять еще одну фиксированную опорную точку. В шкале Кельвина в качестве такой точки используется температура тройной точки воды (0,01 °С), в которой в тепловом равновесии находятся все три фазы – лед, вода и пар. По шкале Кельвина температура тройной точки принимается равной 273,16 К.

Связь между абсолютной температурой и температурой по шкале Цельсия выражается формулой Т = 273,16 + t , где t – температура в градусах Цельсия.

Чаще пользуются приближенной формулой Т = 273 + t и t = Т – 273

Абсолютная температура не может быть отрицательной.

Температура газа – мера средней кинетической энергии движения молекул.

В опытах Шарлем была найдена зависимость p от t. Эта же зависимость будет и между р и Т: т.е. между р и Т прямопропорциональная зависимость .

С одной стороны, давление газа прямопропорционально его температуре, с другой стороны, мы уже знаем, что давление газа прямопропорционально средней кинетической энергии поступательного движения молекул Е (p = 2/3*E*n). Значит, Е прямопропорциональна Т.

Немецкий ученый Больцман предложил ввести коэффициент пропорциональности (3/2)k в зависимость Е от Т

Е = (3/2) k Т

Из этой формулы следует, что среднее значение кинетической энергии поступательного движения молекул не зависит от природы газа, а определяется только его температурой.

Так как Е = m*v 2 /2, то m*v 2 /2 = (3/2)kТ

откуда средняя квадратичная скорость молекул газа

Постоянная величина k называется постоянная Больцмана.

В СИ она имеет значение k = 1,38*10 -23 Дж/К

Если подставить значение Е в формулу p = 2/3*E*n , то получим p = 2/3*(3/2)kТ* n, сократив, получим p = n * k

Давление газа не зависит от его природы, а определяется только концентрацией молекул n и температурой газа Т.

Соотношение p = 2/3*E*n устанавливает связь между микроскопическими (значения определяются с помощью расчетов) и макроскопическими (значения можно определить по показаниям приборов) параметрами газа, поэтому его принято называть основным уравнением молекулярно – кинетической теории газов .

Молекулы в идеальном газе движутся хаотически. Движение одной молекулы характеризуют микроскопические параметры (масса молекулы, ее скорость, импульс, кинетическая энергия). Свойства газа как целого описываются с помощью макроскопических параметров (масса газа, давление, объем, температура). Молекулярно-кинетическая теория устанавливает взаимосвязь между микроскопическими и макроскопическими параметрами.

Число молекул в идеальном газе столь велико, что закономерности их поведения можно выяснить только с помощью статистического метода. Равномерное распределение в пространстве молекул идеального газа является наиболее вероятным состоянием газа, т. е. наиболее часто встречающимся.

Распределение молекул идеального газа по скоростям при определенной температуре является статистической закономерностью.

Наиболее вероятная скорость молекул - скорость, которой обладает максимальное число молекул. Стационарное равновесное состояние газа - состояние, в котором число молекул в заданном интервале скоростей остается постоянным.

Температура тела - мера средней кинетической энергии поступательного движения его молекул:

где черта сверху - знак усреднения по скоростям, k = 1,38 10 -23 Дж/К - постоянная Больцмана.

Единица термодинамической температуры - кельвин (К).

При абсолютном нуле температуры средняя кинетическая энергия молекул равна нулю.

Средняя квадратичная (тепловая) скорость молекул газа


где М - молярная масса, R = 8,31 Дж/(К моль) - молярная газовая постоянная.

Давление газа - следствие ударов движущихся молекул:


где n - концентрация молекул (число молекул в единице объема), E k - средняя кинетическая энергия молекулы.

Давление газа пропорционально его температуре :


Постоянная Лошмидта - концентрация идеального газа при нормальных условиях (атмосферное давление р= 1,01 10 5 Па и температура Т = 273 К):

Уравнение Клапейрона-Менделеева - уравнение состояния идеального газа, связывающее три макроскопических параметра (давление, объем, температуру) данной массы газа.


Изопроцесс - процесс, при котором один из макроскопических параметров состояния данной массы газа остается постоянным. Изотермический процесс - процесс изменения состояния определенной массы газа при постоянной температуре.

Закон Бойля-Мариотта : для газа данной массы при постоянной температуре:


где р 1 , р 2 , V 1 , V 2 - давление и объем газа в начальном и конечном состояниях

Изотерма - график изменения макроскопических параметров газа при изотермическом процессе. Изобарный процесс - процесс изменения состояния определенной массы газа при постоянном давлении.

Закон Гей-Люссака : для газа данной массы при постоянном давлении

Основные положения МКТ:

1. Все вещества состоят из мельчайших частиц: молекул, атомов или ионов.

2. Эти частицы находятся в непрерывном хаотическом движении, скорость которого определяет температуру вещества.

3. Между частицами существуют силы притяжения и отталкивания, характер которых зависит от расстояния между ними.

Идеальный газ - это газ, взаимодействие между молекулами которого пренебрежимо мало.

Основные отличия идеального газа от реального: частицы идеального газа - шарики очень малых размеров, практически материальные точки; между частицами отсутствуют силы межмолекулярного взаимодействия; соударения частиц абсолютно упругие. Реальный газ - газ, который не описывается уравнением состояния идеального газа Клапейрона - Менделеева. Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определенный объем. Состояние реального газа часто на практике описывается обобщенным уравнением Менделеева - Клапейрона.

2 Параметры и функции состояния. Уравнение состояния идеального газа.

Параметры:

Давление обусловлено взаимо­действием молекул рабочего тела с по­верхностью и численно равно силе, дей­ствующей на единицу площади повер­хности тела по нормали к последней.

Температурой называется фи­зическая величина, характеризующая степень нагретости тела. С точки зрения молекулярно-кинетических представлений температура есть мера интенсивности теплового движения молекул.

Удельный объем v - это объем единицы массы вещества. Если однородное тело массой М занимает объем v, то по определению v= V/М. В системе СИ единица удельного объема 1 м3/кг. Между удельным объемом вещества и его плотность существует очевидное соотношение:

Если все термодинамические пара­метры постоянны во времени и одинако­вы во всех точках системы, то такое состояние системы называется равно­весным.

Для равновесной термодинамической системы существует функциональная связь между параметрами состояния, ко­торая называется уравнением со­стояния

урав­нение Клапейрона - Менделеева

3 Смеси газов. Кажущаяся молекулярная масса. Газовая постоянная смеси газов.

Смесь газов – механическое соединение не вступающих друг с другом химическую реакцию газов. Основным законом, определяющим поведение газовой смеси, является закон Дальтона: полное давление смеси иде­альных газов равно сумме парциальных давлений всех входящих в нее компо­нентов:Парциальное давление pi - давление, которое имел бы газ, если бы он один при той же температуре занимал весь объем смеси. Газовую постоянную смеси определяют как:,- кажущаяся (средняя) молекулярная масса смеси. При объемном составе, при массовом составе:.-универсальная газовая постоянная.

4 Первый закон термодинамики.

Первый закон термодинамики - это закон сохранения энергии, записанный с помощью термодинамических понятий (аналитическая формулировка: вечный двигатель 1 рода невозможен):

Энергия. Под внутренней энергией в термодинамике понимают кинетическую энергию движения молекул, потенциальную энергию их взаимодействия и нулевая (энергея движения частиц внутри молекулы при T=0K). Кинетическая энергия молекул явля­ется функцией температуры, значение потенциальной энергии зависит от сред­него расстояния между молекулами и, следовательно, от занимаемого газом объема V, т. е. является функцией V. По­этому внутренняя энергия U есть функ­ция состояния тела.

Теплота. Энергия, предаваемая от одного тела к другому за счет разности температур, называется теплотой. Теплота может передаваться либо при непосредственном контакте между телами (теплопроводностью, конвек­цией), либо на расстоянии (излучением), причем во всех случаях этот процесс возможен только при наличии разности температур между телами.

Работа. Энергия, передаваемая от одного тела к другому при изменении объема этих тел или перемещение в пространстве, называется работой. При конечном изменении объема работа против сил внешнего давления, называе­мая работой расширения, равна Работа из­менения объема эквивалентна площади под кривой процесса в диаграмме р, v.

Внутренняя энергия - это свойство самой системы, она характеризует состо­яние системы. Теплота и работа - это энергетические характеристики процес­сов механического и теплового взаи­модействий системы с окружающей средой. Они характеризуют те количест­ва энергии, которые переданы системе или отданы ею через ее границы в опре­деленном процессе.