Электромагнитные колебания. Электрические колебания и электромагнитные волны Уравнение описывающее колебания переменного тока

В замкнутом контуре, содержащем заряженный конденсатор и катушку индуктивности, возникают электрические колебания. Они происходят следующим образом. Конденсатор начинает разряжаться, через катушку проходит ток, в ней создается магнитное поле и возникает электродвижущая сила самоиндукции. Электродвижущая сила самоиндукции поддерживает ток после того, как конденсатор полностью разрядится; это приводит к тому, что конденсатор вновь заряжается, но уже с полярностью пластин обратной исходной. Затем процесс повторяется, но ток в контуре имеет обратное направление. Таким образом, при электрических колебаниях в конденсаторе контура имеется переменное электрическое поле, а в катушке - переменное магнитное поле, которые взаимно переходят одно в другое посредством образующегося в контуре переменного тока.

Если частота переменного электрического и магнитного полей достаточно высока (в области сверхвысоких частот), то взаимный переход их может происходить непосредственно путем взаимной индукции в свободном пространстве.

Совокупность взаимно связанных и переходящих одно в другое высокочастотных электрического и магнитного полей называется электромагнитным полем. Электромагнитное поле, образующееся в колебательном контуре и называемое полем индукции, отличается тем, что его электрическая и магнитная составляющие связаны с элементами контура (емкостью и индуктивностью) и потому могут быть использованы в какой-то мере независимо одна от другой.

Электромагнитное поле, образовавшееся в свободном пространстве и называемое полем излучения, распространяется со скоростью света от источника по всем направлениям, образуя электромагнитную волну.

В электромагнитной волне электрическая и магнитная составляющие могут быть разделены только условно. Источником электромагнитных волн является колебательный контур генератора, снабженный излучателем волн - антенной.

Электрические колебания используют для лечебных целей: а) при общей дарсонвализации (см.), когда воздействие осуществляется высокочастотным импульсным электромагнитным полем, образуемым при определенных условиях в соленоиде колебательного контура аппарата, внутри которого помещается больной; б) при индуктотермии (см.), когда воздействие производится преимущественно магнитным полем, образуемым с помощью спирали, обтекаемой высокочастотным током и наложенной на область тела больного, подлежащую воздействию; в) при терапии нолем УВЧ, при которой воздействие осуществляется электрическим полем, образующимся между пластинами конденсатора, подключенного к колебательному контуру аппарата; между ними помещается область тела больного, подлежащая воздействию.

Первичное действие на ткани организма высокочастотного магнитного поля связано главным образом с образованием в тканях-проводниках вихревых токов, что при достаточной их мощности дает тепловой эффект.

Высокочастотное электрическое поле в тканях-проводниках вызывает колебательное движение ионов (ток проводимости), в тканях-диэлектриках происходят поляризационные явления (основное значение имеет ориентационная поляризация, в результате которой в связи с переменным характером поля молекулы совершают вращательные колебания - осцилляции, сопровождающиеся как тепловым эффектом, так и более глубокими структурно-химическими изменениями в тканях).

Первичное действие электромагнитного поля на ткани организма соответствует совместному действию его электрической и магнитной составляющих.

Электромагнитные волны характеризуются частотой колебаний или длиной волны. Длина волны - это расстояние, на которое она распространяется за один период колебаний ее электрической или магнитной составляющей. Различные по длине волны по-разному действуют на ткани организма. Среди радиоволн различают длинные, средние, короткие и ультракороткие (см. таблицу).

Для лечебных целей (микроволновая терапия) используют волны дециметрового и сантиметрового диапазонов. Облучение участка поверхности тела больного осуществляется направленным потоком волн от излучателя при помощи специальных рефлекторов или волноводов.

Первичное действие микроволн на ткани организма - это действие электромагнитного поля сверхвысокой частоты; в основном оно заключается в колебаниях ионов и других заряженных частиц, имеющихся в тканях-проводниках, а также в осцилляциях дипольных молекул в тканях-диэлектриках.

Особенностью действия микроволн является поглощение их в поверхностно расположенных слоях тканей; особое значение приобретают при этих частотах диэлектрические свойства воды (см. Электролечение).

«Физика - 11 класс»

1 .
При электромагнитных колебаниях происходят периодические изменения электрического заряда, силы тока и напряжения. Электромагнитные колебания подразделяются на свободные, затухающие, вынужденные и автоколебания.


2 .
Простейшей системой, в которой наблюдаются свободные электромагнитные колебания, является колебательный контур. Он состоит из проволочной катушки и конденсатора.
Свободные электромагнитные колебания возникают при разрядке конденсатора через катушку индуктивности.
Вынужденные колебания вызываются периодической ЭДС.
В колебательном контуре энергия электрического поля заряженного конденсатора периодически переходит в энергию магнитного поля тока.
При отсутствии сопротивления в контуре полная энергия электромагнитного поля остается неизменной.


3 .
Электромагнитные и механические колебания имеют разную природу, но описываются одинаковыми уравнениями.
Уравнение, описывающее электромагнитные колебания в контуре, имеет вид

где
q - заряд конденсатора
q" - вторая производная заряда по времени;
ω 0 2 - квадрат циклической частоты колебаний, зависящей от индуктивности L и емкости С .


4 .
Решение уравнения, описывающего свободные электромагнитные колебания, выражается либо через косинус, либо через синус:

q = q m cos ω 0 t или q = q m sin ω 0 t .


5 .
Колебания, происходящие по закону косинуса или синуса, называются гармоническими.
Максимальное значение заряда q m на обкладках конденсатора называется амплитудой колебаний заряда.
Величина ω 0 называется циклической частотой колебаний и выражается через число v колебаний в секунду: ω 0 = 2πv .

Период колебаний выражается через циклическую частоту следующим образом:

Величину, стоящую под знаком косинуса или синуса в решении для уравнения свободных колебаний, называют фазой колебаний.
Фаза определяет состояние колебательной системы в данный момент времени при заданной амплитуде колебаний.


6 .
Из-за наличия у контура сопротивления колебания в нем с течением времени затухают.


7
Вынужденные колебания, т. е. переменный электрический ток, возникают в цепи под действием внешнего периодического напряжения.
Между колебаниями напряжения и силы тока в общем случае наблюдается сдвиг фаз φ.
В промышленных цепях переменного тока сила тока и напряжение меняются гармонически с частотой v = 50 Гц.
Переменное напряжение на концах цепи создается генераторами на электростанциях.

8 .
Мощность в цепи переменного тока определяется действующими значениями силы тока и напряжения:

Р = IU cos φ .


9 .
Сопротивление цепи с конденсатором обратно пропорционально произведению циклической частоты на электроемкость.


10 .
Катушка индуктивности оказывает сопротивление переменному току.
Это сопротивление, называемое индуктивным, равно произведению циклической частоты на индуктивность.

ωL = Х L


11 .
При вынужденных электромагнитных колебаниях возможен резонанс - резкое возрастание амплитуды силы тока при вынужденных колебаниях при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.
Резонанс выражен отчетливо лишь при достаточно малом активном сопротивлении контура.

Одновременно с возрастанием силы тока при резонансе происходит резкое увеличение напряжения на конденсаторе и катушке. Явление электрического резонанса используется при радиосвязи.


12 .
Автоколебания возбуждаются в колебательном контуре генератора на транзисторе за счет энергии источника постоянного напряжения.
В генераторе используется транзистор, т. е. полупроводниковое устройство, состоящее из эмиттера, базы и коллектора и имеющее два р-n-перехода. Колебания тока в контуре вызывают колебания напряжения между эмиттером и базой, которые управляют силой тока в цепи колебательного контура (обратная связь).
От источника напряжения в контур поступает энергия, компенсирующая потери энергии в контуре на резисторе.

Это позволяет не учитывать волнового характера процессов и описывать их как электрич. зарядов Q (в ёмкостных элементах цепи) и токов I (в индуктивных и диссипативных элементах) в соответствии с ур-нием непрерывности: I=±dQ/dt. В случае одиночного колебательного контура Э. к. описываются ур-нием:

где L - самоиндукция, С - ёмкость, R - сопротивление, ? - внешняя ЭДС.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ

- электромагнитные колебания в квазистационарных цепях, размеры к-рых малы по сравнению с длиной эл.-магн. волны. Это позволяет не учитывать волнового характера процессов и описывать их как колебания электрич. зарядов (в ёмкостных элементах цепи) и токов I (в индуктивных и диссипативных элементах) в соответствии с ур-нием непрерывности: В случае одиночного колебательного контура Э. к. описываются ур-нием где L-индуктивность, С-ёмкость, R -сопротивление, - переменная внешняя эдс. M. А. Миллер.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


  • ЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ

Смотреть что такое "ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ" в других словарях:

    электрические колебания - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electric oscillations … Справочник технического переводчика

    ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ - многократно повторяющиеся изменения силы тока, напряжения и заряда, происходящие в электрических (см.) и сопровождающиеся соответствующими изменениями магнитных и электрических полей, создаваемых этими изменениями токов и зарядов, в окружающем… … Большая политехническая энциклопедия

    электрические колебания - elektriniai virpesiai statusas T sritis fizika atitikmenys: angl. electric oscillations vok. elektrische Schwingungen, f rus. электрические колебания, n pranc. oscillations électriques, f … Fizikos terminų žodynas

    Уже давно было замечено, что если обмотать стальную иглу проволокой и разрядить через эту проволоку лейденскую банку, то северный полюс не всегда получается на том конце иглы, где его можно было ожидать по направлению разрядного тока и по правилу … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Многократно повторяющиеся изменения напряжения и силы тока в электрич. цепи, а также напряжённостей электрич. и магн. полей в пространстве вблизи проводников, образующих электрич. цепь. Различают собственные колебания, вынужденные колебания и… … Большой энциклопедический политехнический словарь

    Электромагнитные колебания в системе проводников в случае, когда можно не учитывать электромагнитные поля в окружающем пространстве, а рассматривать только движения электрических зарядов в проводниках. Обычно это возможно в так называемых …

    КОЛЕБАНИЯ - КОЛЕБАНИЯ, процессы (в наиболее общем смысле), периодически меняющие свое направление со временем. Процессы эти могут быть весьма разнообразными. Если напр. подвесить на стальной спиральной пружине тяжелый шар, оттянуть его и затем предоставить… … Большая медицинская энциклопедия

    Движения (изменения состояния), обладающие той или иной степенью повторяемости. При К. маятника повторяются отклонения его в ту и другую сторону от вертикального положения. При К. пружинного маятника груза, висящего на пружине,… … Большая советская энциклопедия

    См. Электрические колебания … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Книги

  • Теоретические основы электротехники. Электрические цепи. Учебник , Л. А. Бессонов. Рассмотрены традиционные и новые вопросы теории линейных и нелинейных электрических цепей. К традиционным относятся методы расчета токов и напряжений при постоянных, синусоидальных,…

Электрические колебания и электромагнитные волны

Колебательные изменения в электрической цепи величин заряда, тока или напряжения называют электрическими колебаниями. Переменные электрический ток является одним из видов электрических колебаний.

Электрические колебания высокой частоты получают в большинстве случаев с помощью колебательного контура.

Колебательный контур представляет замкнутую цепь, состоящую из индуктивности L и емкости C .

Период собственных колебаний контура:

а ток в контуре изменяется но закону затухающих колебаний:

При воздействии на колебательный контур переменной ЭДС в контуре устанавливаются вынужденные колебания. Амплитуда вынужденных колебаний тока при постоянных значениях L , C , R зависит от отношения собственной частоты колебаний контура и частоты изменения синусоидальной ЭДС (рис.1).

Согласно закону Био–Савара–Лапласа ток проводимости создает магнитное поле с замкнутыми силовыми линиями. Такое поле называется вихревым .

Переменный ток проводимости создает переменное магнитное поле. Переменный ток в отличие от постоянного проходит через конденсатор; но этот ток не является током проводимости; он называется током смещении . Ток смещения представляет собой изменяющееся но времени электрическое поле; он создает переменное магнитное поле, как и переменный ток проводимости. Плотность тока смещения:

В каждой точке пространства изменение во времени индукции электрического поля создает переменное вихревое магнитное поле (рис.2а). Векторы B возникающего магнитного ноля лежат в плоскости, перпендикулярной к вектору D . Математическое уравнение, выражающее эту закономерность, называется первым уравнением Максвелла .

При электромагнитной индукции возникает электрическое поле с замкнутыми силовыми линиями (вихревое ноле), которое проявляется как ЭДС индукции. В каждой точке пространства изменение во времени вектора индукции магнитного поля создает переменное вихревое электрическое поле (рис.2б). Векторы D возникающего электрического поля лежат в плоскости, перпендикулярной к вектору B . Математическое уравнение, описывающее эту закономерность, называется вторым уравнением Максвелла .

Совокупность переменных электрических и магнитных полей, которые неразрывно связаны друг с другом, называется электромагнитным полем.

Из уравнений Максвелла следует, что возникшее в какой-либо точке изменение во времени электрического (или магнитного) поля будет перемещаться от одной точки к другой, при этом будут происходить взаимные превращения электрических и магнитных полей.

Электромагнитные волны представляют собой процесс одновременного распространения в пространстве изменяющихся электрического и магнитного полей. Векторы напряженностей электрического и магнитного полей (E и H ) к электромагнитной волне перпендикулярны друг к другу, а вектор v скорости распространения перпендикулярен к плоскости, в которой лежат оба вектора E и H (рис.3), Это справедливо при распространении электромагнитных волн и неограниченном пространстве.

Скорость распространения электромагнитных волн в вакууме не зависит от длины волны и равна

Скорость электромагнитных волн в различных средах меньше скорости в вакууме.

Колебательный контур — один из основных элементов радиотехнических систем. Различают линейные и нелинейные колебательные контуры . Параметры R , L и С линейного колебательного контура не зависят от интенсивности колебаний, а период колебаний не зависит от амплитуды.

При отсутствии потерь (R = 0 ) в линейном колебательном контуре происходят свободные гармонические колебания .

Для возбуждения колебаний в контуре конденсатор предвари-тельно заряжают от батареи аккумуляторов, сообщив ему энергию W p , и переводят переключатель в положение 2.

После замыкания цепи конденсатор начнет разряжаться через катушку индуктивности, теряя энергию. В цепи появится ток, вызывающий переменное магнитное поле . Переменное магнитное поле, в свою очередь приводит к созданию вихревого электрического поля, пре-пятствующего току, в результате чего изменение тока происходит постепенно. По мере увеличения тока через катушку возрастает энергия магнитного поля W м . Полная энергия W электромагнитного поля контура остается постоянной (при отсутствии сопротивления) и равной сумме энергий магнитного и электрического полей. Пол-ная энергия, в силу закона сохранения энергии , равна максимальной энергии электрического или магнитного поля:

,

где L — индуктивность катушки, I и I m — сила тока и ее максимальное значение, q и q m — заряд конденсатора и его максимальное значение, С — емкость конденсатора .

Процесс перекачки энергии в колебательном контуре между электрическим полем конденса-тора при его разрядке и магнитным полем, сосредоточенным в катушке, полностью аналогичен процессу превращения потенциальной энергии растянутой пружины или поднятого груза матема-тического маятника в кинетическую энергию при механических колебаниях последних.

Ниже приводится соответствие между механическими и электрическими величинами при колебательных процессах.

Дифференциальное уравнение , описывающее процессы в колебательном контуре, можно получить, приравняв производную по полной энергии контура к нулю (поскольку полная энергия постоянна) и заменив в полученном уравнении ток на производную заряда по времени. В окончательном виде уравнение выглядит так:

.

Как видно, уравнение ничем не отличается по форме от соответствующего дифференциального уравнения для свободных механических колебаний шарика на пружине. Заменив механические параметры системы на электрические с помощью приведенной выше таблицы, мы в точности получим уравнение .

По аналогии с решением дифференциального уравнения для механической колебательной системы циклическая частота свободных электрических колебаний равна:

.

Период свободных колебаний в контуре равен:

.

Формула называется формулой Томсона в честь английского физика У. Томсона (Кельвина), который ее вывел.

Увеличение периода свободных колебаний с возрастанием L и С объясняется тем, что при увеличении индуктивности ток медленнее нарастает и медленнее падает до нуля, а чем больше емкость, тем больше времени требуется для перезарядки конденсатора.

Гармонические колебания заряда и тока описываются теми же уравнениями, что и их механические аналоги:

q = q m cos ω 0 t,

i = q" = - ω 0 q m sin ω 0 t = I m cos (ω 0 t + π/2),

где q m — амплитуда колебаний заряда, I m = ω 0 q m — амплитуда колебаний силы тока. Колебания силы тока опережают по фазе на π/2 колебания заряда.